Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.2.124

Characteristics and Biocompatibility of Electrospun Nanofibers with Poly(L-lactide-co-ε-caprolactone)/Marine Collagen  

Kim, Woo-Jin (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Shin, Young-Min (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Park, Jong-Seok (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Gwon, Hui-Jeong (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Kim, Yong-Soo (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Shin, Heung-Soo (Department of Bioengineering, Division of Applied Chemical and Bio Engineering, Hanyang University)
Nho, Young-Chang (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Lim, Youn-Mook (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Chong, Moo-Sang (Department of Clinical Pathology, Cheju Halla University)
Publication Information
Polymer(Korea) / v.36, no.2, 2012 , pp. 124-130 More about this Journal
Abstract
The uniform nanofibers of poly(L-lactide-$co$-${\varepsilon}$-caprolactone) (PLCL) with different contents of marine collagen (MC) were successfully prepared by electrospinning method. The effects of the major parameters in electrospinning process such as tip to target distance (TTD), voltage, nozzle size and flow rate on the average diameter of the electrospun nanofiber were investigated in generating composite nanofiber. The diameter and morphology of the nanofibers were confirmed by a scanning electron microscopy (SEM). Also, we measured a water contact angle to determine the surface wettability of the nanofibers. The average diameter of the nanofibers decreased as the value of TTD, MC contents, and voltages increased in comparison with that of pristine PLCL nanofiber. In contrast, the diameter of the nanofibers increased as the flow rate and inner diameter of nozzle increased in comparison with that of pristine PLCL. In addition, the hydrophilicity of the nanofiber and attachment of MG-63 cells on the sheets increased as incorporated collagen contents increased. Therefore, the marine collagen would be a potential material to enhance cellular interactivity of synthetic materials by mimicking the natural tissue.
Keywords
poly(L-lactide-$co$-${\varepsilon}$-caprolactone); marine collagen; nanofiber; electrospinning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polym. Sci., 96, 557 (2005).   DOI   ScienceOn
2 V. Beachley and X. Wen, Mater. Sci. Eng. C, 29, 663 (2009).   DOI   ScienceOn
3 S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 35, 8456 (2002).   DOI   ScienceOn
4 J. Zeng, X. Chen, X. Xu, Q. Liang, X. Bian, L. Yang, and X. Jing, J. Appl. Polym. Sci., 89, 1085 (2003).   DOI   ScienceOn
5 W. Cui, X. Li, S. Zhou, and J. Weng, J. Appl. Polym. Sci., 103, 3105 (2007).   DOI   ScienceOn
6 J. Acossay, A. Marruffo, R. Rincon, T. Eubanks, and A. Kuang, Polym. Adv. Technol., 18, 180 (2007).   DOI   ScienceOn
7 J. Lee, G. Tae, Y. H. Kim, I. S. Park, and S. H. Kim, Biomaterials, 29, 1872 (2008).   DOI   ScienceOn
8 M. Spasova, O. Stoilova, N. Manolova, I. Rashkov, and G. Altankov, J. Bioact. Compat. Polym., 22, 62 (2007).   DOI   ScienceOn
9 I. K. Kwon, S. Kidoaki, and T. Matsuda, Biomaterials, 26, 3929 (2005).   DOI   ScienceOn
10 S. I. Jeong, B. S. Kim, S. W. Kang, J. H. Kwon, Y. M. Lee, S. H. Kim, and Y. H. Kim, Biomaterials, 25, 5939 (2004).   DOI   ScienceOn
11 K. Garkhal, S. Verma, K. Tikoo, and N. Kumar, J. Biomed. Mater. Res. Part A, 82, 747 (2007).
12 M. Honda, N. Morikawa, K. Hata, T. Yada, S. Morita, and M. Ueda, and K. Kimata, Biomaterials, 24, 3511 (2003).   DOI   ScienceOn
13 K. S. Rho, L. Jeong, G. Lee, B. M. Seo, Y. J. Park, S. D. Hong, S. Roh, J. J. Cho, W. H. Park, and B. M. Min, Biomaterials, 27, 1452 (2006).   DOI   ScienceOn
14 J. D. Stitzel, K. J. Pawlowski, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, J. Biomater. Appl., 16, 22 (2001).   DOI   ScienceOn
15 M. Ogawa, R. J. Portier, M. W. Moody, J. Bell, M. A. Schexnayder, and J. N. Losso, Food Chem., 88, 495 (2004).   DOI   ScienceOn
16 E. Song, S. Y. Kim, T. Chun, H. J. Byun, and Y. M. Lee, Biomaterials, 27, 2951 (2006).   DOI   ScienceOn
17 S. I. Jeong, S. Y. Kim, S. K. Cho, M. S. Chong, K. S. Kim, H. Kim, S. B. Lee, and Y. M. Lee, Biomaterials, 28, 1115 (2007).   DOI   ScienceOn
18 Z.-M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).   DOI   ScienceOn
19 Z. Chen, X. Mo, and F. Qing, Mater. Lett., 61, 3490 (2007).   DOI   ScienceOn
20 I. K. Kwon and T. Matsuda, Biomacromolecules, 6, 2096 (2005).   DOI   ScienceOn
21 P. Heikkil and A. Harlin, Eur. Polym. J., 44, 3067 (2008).   DOI   ScienceOn
22 L. Yan, H. Zhengming, and L. Yandong, Eur. Polym. J., 42, 1696 (2006).   DOI   ScienceOn
23 S. Zhao, X. Wu, L. Wang, and Y. Huang, J. Appl. Polym. Sci., 91, 242 (2004).   DOI   ScienceOn
24 T. Uyar and F. Besenbacher, Polymer, 49, 5336 (2008).   DOI   ScienceOn
25 D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000).   DOI   ScienceOn
26 J. A. Matthews, E. D. Boland, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, J. Bioact. Compat. Polym., 18, 125(2003).   DOI   ScienceOn
27 X. Xin, M. Hussain, and J. J. Mao, Biomaterials, 28, 316 (2007).   DOI   ScienceOn
28 K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y. S. Seo, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, Biomaterials, 24, 4977 (2003).   DOI   ScienceOn
29 H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003).   DOI   ScienceOn
30 S. I. Jeong, J. H. Kwon, J. I. Lim, S. W. Cho, Y. Jung, W. J. Sung, S. H. Kim, Y. H. Kim, Y. M. Lee, B. S. Kim, C. Y. Choi, and S. J. Kim, Biomaterials, 26, 1405 (2005).   DOI   ScienceOn
31 B. Duan, X. Yuan, Y. Zhu, Y. Zhang, X. Li, Y. Zhang, and K. Yao, Eur. Polym. J., 42, 2013 (2006).   DOI   ScienceOn
32 H. Homayoni, S. A. H. Ravandi, and M. Valizadeh, Carbohydr. Polym., 77, 656 (2009).   DOI   ScienceOn
33 J. Venugopal, L. L. Ma, T. Yong, and S. Ramakrishna, Cell. Biol. Int., 29, 861 (2005).   DOI   ScienceOn