Browse > Article

Effect of Poly(vinyl alcohol) Adhesives on the Dimensional Stability of LCD Polarizer  

Suh, Ju-Hee (Center for Photofunctional Energy Materials, Department of Polymer Science & Engineering, Dankook University)
Shin, Jung-Woo (Center for Photofunctional Energy Materials, Department of Polymer Science & Engineering, Dankook University)
Kim, Hyo-Kap (Center for Photofunctional Energy Materials, Department of Polymer Science & Engineering, Dankook University)
Kim, Han-Sung (Hyosung Corp.)
Kim, Yong-Won (Hyosung Corp.)
Kang, Ho-Jong (Center for Photofunctional Energy Materials, Department of Polymer Science & Engineering, Dankook University)
Publication Information
Polymer(Korea) / v.34, no.6, 2010 , pp. 560-564 More about this Journal
Abstract
Dimensional stability of LCD polarization film consisted of triacetyl cellulose (TAC) and poly(vinyl alcohol) (PVA) film has been studied and especially, the effect of PVA adhesive on the dimensional stability has been considered as function of deacetylation and molecular weight of PVA adhesive. The maximum adhesion strength between TAC and PVA film was obtained in the laminate using PVA adhesive with 70% of OH content and the effect of molecular weight on the adhesion strength was only pronounced in the laminate using PVA adhesive with OH content above 70%. It was found that the optimum dimensional stability of TAC/PVA/TAC laminate (polarizing film) was obtained when applied PVA adhesive has low molecular weight and it was more dependent upon the OH content than the adhesion strength between TAC and PVA films.
Keywords
dimensional stability; LCD polarizer; adhesives; triacetyl cellulose; poly(vinyl alcohol);
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 P. G. de Gennes, J. Chem. Phys., 55, 572 (1971).   DOI
2 S. Shimamoto and D. G. Gray, Cellulose, 6. 15 (1999).   DOI   ScienceOn
3 N. P. Zakuradaeva and T. A. Ivanova, Fibre Chem., 7, 5 (1986).
4 C. C. Demerlis and D. R. Schoneker, Food Chem. Toxicol., 41, 3 (2003).
5 A. P. Haag, G. G. Geesey, and M. W. Mittleman, Inter. J. Adhes. Adhes., 26, 3 (2006).
6 R. H. Schmedlen, K. S. Masters, and J. L. West, Biomaterials, 23, 2 (2002)
7 S. Gallego, C. Neipp, M. Ortuno, E. Fernandez, A. Belendez, and I. Pascual, Opt. Commun., 281, 6 (2008).
8 K. Nakano, Y. Tozuka, and H. Takeuchi, Int. J. Pharm., 354, 1 (2008).   DOI   ScienceOn
9 W. Li, Y. Zheng, and R. Cheng, Polymer, 49, 21 (2008).
10 J. Brandrup, H. I. Edmund, A. G. Eric, A. Akihiro, and D. R. Bloch, Polymer Handbook, John Wiley &Sons, 2005.
11 R. P. Wool and K. M. O'Connor, J. Appl. Phys., 52, 5953 (1981).   DOI   ScienceOn
12 K. M. O. Connor and R. P. Wool, Bull. APS, 30, 389(1985).
13 C. M. Quintella, A. M. V. Lima, C. C. Goncalves, Y. N. Watanabe, A. P. Mammana, M. A. Schreiner, I. Pepe, and A. A. Pizzo, J. Colloid Interface Sci., 262, 221 (2003).   DOI   ScienceOn
14 A. Kawski, A. Kubicki, B. Kuklinski, and I. Gryczynski, J. Photoch. Photobio. A, 71, 2 (1993).
15 S. Morozumi, Advances in Electronics and Electron Physics, 77, 1 (1990).
16 R. W. Sabnis, Display, 20, 3 (1999).   DOI   ScienceOn
17 A. Tagaya, H. Ohkita, M. Mukaoh, R. Sakaguchi, and Y. Koike, Science, 301, 812 (2003).   DOI   ScienceOn
18 R. Mizoguchi, K. Kobayashi, T. Shimomura, and S. Kobayashi, Display, 20, 3 (1990).
19 C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. Roonnow, M. Stroomme Mattsson, M. Veszelei, and G. Vaivars, Sol. Energy, 63, 4 (1998).
20 P. Wu and N. Rao, Opt. Mater., 21, 1 (2003).   DOI   ScienceOn
21 T. Ryuichi, M. Shoichi, and T. Naoyuki, Int. J. Appl. Radiat. Isot., 3, 5 (1984).
22 H. Nakajama, N. Fukagawa, Y. Nishiura, T. Yasuda, T. Ito, and K. Mihayashi, J. Photopolym. Sci. Technol., 19, 2 (2006).