Browse > Article

Properties of Bacterial Cellulose Cultured in Different Carbon Sources  

Park, Sang-Min (Department of Biomaterial Engineering, Pusan National University)
Yoon, Sang-Jun (Department of Biomaterial Engineering, Pusan National University)
Son, Hong-Joo (Department of Life Science and Environmental Biochemistry, Pusan National University)
Lee, Chung-Yeol (Department of Plant Bioscience, Pusan National University)
Kim, Hong-Sung (Department of Biomaterial Engineering, Pusan National University)
Publication Information
Polymer(Korea) / v.34, no.6, 2010 , pp. 522-526 More about this Journal
Abstract
Bacterial cellulose is produced by the bacterium Gluconacetobacter xylinus, which forms a nanofibrous pellicle in its culture medium. We studied properties of the bacterial cellulose such as crystallinity, viscosity, morphology, and mechanical properties according to the carbon source. Static cultures of Gluconacetobacter sp. V6 were performed in three kinds of media: standard Hestrin-Schramm medium, and modified medium with either glycerol or molasses as carbon sources. Cell growth and cellulose yield were increased in the glycerol and molasses media. The culture in the glycerol medium improved the physical properties of cellulose such as crystallinity, intrinsic viscosity, and breaking stress. However, the culture in the molasses medium decreased crystallinity, crystallite size, and intrinsic viscosity of cellulose. In summary, the cellulose yield was remarkably improved in the molasses medium, but with inferior structural properties.
Keywords
bacterial cellulose; structural property; nanofibrous pellicle; molasses medium; carbon source;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 S. J. Kim, H. J. Song, and M. H. Chang, Korean J. Biotechnol. Bioeng., 22, 91 (2007).   과학기술학회마을
2 R. E. Cannon and S. M. Anderson, Crit. Rev. Microbiol., 17, 435 (1991).   DOI   ScienceOn
3 D. Mikkelsen, B. M. Flanagan, and G. A. Dykes, J. Appl. Microbiol., 107, 576 (2009).   DOI   ScienceOn
4 H. Yamamoto and F. Horii, Macromolecules, 26, 1313 (1993).   DOI   ScienceOn
5 H. S. Kim and S. Y. Bae, J. Korea Textile Sci. Eng., 32, 150 (1995).
6 A. G. Cunha, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, A. Gandini, E. Orblin, and P. Fardim, J. Colloid Interface Sci., 316, 360 (2007).   DOI   ScienceOn
7 Y. J. Jung, Bulletin of the Korean Fisheries Society, 41, 237 (2008).
8 S. O. Bae and M. Shoda, Appl. Microbiol. Biotechnol., 67, 45 (2005).   DOI   ScienceOn
9 H. I. Jung, O. M. Lee, J. H. Jeong, Y. D. Jeon, K. H. Park, H. S. Kim, W. G. An, and H. J. Son, Appl. Biochem. Biotechnol., 162, 486 (2010).   DOI   ScienceOn
10 A. Hirai, M. Tsuji, and H. Yamamoto, Cellulose, 5, 201 (1998).   DOI   ScienceOn
11 S. H. Moon, J. M. Park, and H. Y. Chun, Biotechnol. Bioprocess Eng., 11, 26 (2006).   DOI   ScienceOn
12 W. Cornelia and K. Dieter, Cellulose, 13, 485 (2006).   DOI   ScienceOn
13 W. Czaja, D. Romanovicz, and R. Brown, Cellulose, 11, 403 (2004).   DOI
14 S. Keshk and K. Sameshima, Afr. J. Biotechnol., 4, 478 (2005).
15 C. Tokoh, K. Takabe, and M. Fujita, Cellulose, 5, 249 (1998).   DOI   ScienceOn
16 T. Roukas, Process Biochem., 33, 805 (1998).   DOI   ScienceOn
17 S. Kaewnopparat, K. Sansernluk, and D. Faroongsarng, AAPS Pharm. Sci. Tech., 9, 701 (2008).   DOI
18 K. Watanabe, M. Tabuchi, and Y. Morinaga, Cellulose, 5, 187 (1998).   DOI   ScienceOn
19 H. K. Lim, H. S. Kye, S. H. Won, J. D. Nam, and Y. K. Lee, Polymer(Korea), 32, 178 (2008).   과학기술학회마을
20 S. Koizumi, Z. Yue, Y. Tomita, T. Kondo, H. Iwase, D. Yamaguchi, and T. Hashimoto, Eur. Phys. J. E., 26, 137 (2008).   DOI   ScienceOn
21 S. Y. Lee, S. K. Lee, H. K. Lim, H. S. Kye, and Y. K. Lee, Polymer(Korea), 30, 532 (2006).   과학기술학회마을
22 H. J. Son, O. M. Lee, and Y. G. Kim, Korean J. Biotechnol. Bioeng., 15, 573 (2000).