Browse > Article

Synthesis of Poly(lactic acid)-g-Acrylic Acid Ion Exchanger by UV Radiation Method and Metal Adsorption Properties  

Choi, Eun-Mi (Department of Chemical Engineering, College of Engineering, Chungnam National University)
Son, Bok-Gi (Department of Chemical Engineering, College of Engineering, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering, College of Engineering, Chungnam National University)
Hwang, Taek-Sung (Department of Chemical Engineering, College of Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.33, no.1, 2009 , pp. 52-57 More about this Journal
Abstract
This study investigates the metal adsorption properties of poly (lactic acid)-g-acrylic acid (PLA-g- AAc) synthesized by UV irradiation method. The properties including degree of grafting, water content, and ion exchange capacity (IC) strongly depend on the critical experimental factors such as UV intensity and AAc concentration. Under the optimized condition, the maximum degree of grafting, the IC value, and water content are 28%, 1.13 meq/g, and 38%, respectively. The synthesized ion exchanger shows strong capacity of adsorption for divalent metal ions such as $Cu^{2+}$, $Ni^{2+}$, and $Co^{2+}$, and greater selectivity of adsorption for $Cu^{2+}$.
Keywords
poly (lactic acid); UV radiation; ion exchange; acrylic acid; adsorption;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 H. Urayama, T. Kanamori, and Y. Kimura. Macromol. Mater. Eng., 287, 116 (2002)
2 M. S. Taylor, A. U. Daniels, K. P. Andriano, and J. J. Heller, Appl. Biomater., 5, 151 (1994)   DOI   ScienceOn
3 R. G. Sinclair, J. Macromol. Sci. Pure Appl. Chem., A33, 585 (1996)
4 D. Sawai, K. Takahashi, T. Imamura, K. Nakamura, T. Kanamoto, and S. H. Hyon, J. Polym. Sci. Polym. Phys., 40, 95 (2002)   DOI   ScienceOn
5 K. R. Kamath and K. N. Park, Adv. Drug. Deliver. Rev., 11, 59 (1993)   DOI   ScienceOn
6 T. G. Park, S. Cohen, and R. Langer, Macromolecules, 25, 116 (1992)   DOI
7 L. Yanfeng, W. Yuanliang, N. Xufeng, F. Chunhua, and W. Suujun, Eur. Polym. J., 43, 3856 (2007)
8 U. Edlund and A. C. Albertsson, Adv. Polym. Sci., 157, 67 (2002)   DOI
9 K. D. Park, H. J. Hung, J. J. Kim, K. D. Ahn, and D. K. Han, Macromol. Res., 14, 552 (2006)   과학기술학회마을   DOI   ScienceOn
10 S. S. Davis, L. Illum, and S. Stolnik, Curr. Opin. Colloid Interf. Sci., 1, 660 (1996)   DOI   ScienceOn
11 B. Yang and W. Yang, J. Membr. Sci., 218, 247 (2003)   DOI   ScienceOn
12 H. Tsuji and Y. Ikada, J. Appl. Polym. Sci., 67, 405 (1998)   DOI   ScienceOn
13 T. Iwata and Y. Doi, Macromolecules, 31, 2461 (1998)   DOI   ScienceOn
14 Y. Ikada and H. Tsuji, Macromol. Rapid Commun., 21, 117 (2000)   DOI   ScienceOn
15 R. A. Jain, Biomaterials, 21, 2475 (2000)   DOI   PUBMED   ScienceOn
16 A. G. Mikos, M. D. Lyman, L. E. Freed, and R. Langer, Biomaterials, 15, 55, (1994)   DOI   ScienceOn
17 Y. Yang, M. C. Porte, P. Marmey, A. J. E. Haj, J. Amedec, and C. Baquey, Nuclear Instruments and Methods in Physics Reseach B, 207, 165 (2003)   DOI   ScienceOn