Browse > Article

Effect of Long Time Physical Aging on Ultra Thin 6FDA-Based Polyimide Films Containing Carboxyl Acid Group  

Im, Hyun-Gu (School of Chemical Engineering & Material Science, Chung-Ang University)
Kim, Joo-Heon (School of Chemical Engineering & Material Science, Chung-Ang University)
Lee, Hyuk-Soo (LG Micron R&D Center)
Kim, Tae-Min (LG Micron R&D Center)
Publication Information
Polymer(Korea) / v.31, no.4, 2007 , pp. 335-342 More about this Journal
Abstract
The goal of this study is to investigate the effect of molecular structure modifications on the kinetics of physical aging of thin films formed from 6FDA-based polyimides with time. The permeability for 6FDA-based polyimide thin films containing carboxyl acid groups commonly decreased 20-50% after the isothermal aging and the selectivity gained anywhere from 10% to 30% while the rate of permeability loss on the change of polymer structure showed different reciprocal relationship between 6FDA-6FpDA based polyimides and 6FDA-DAM based polyimides. The Lorenz-Lorentz equation was used to relate changes in refractive index to densification and volume relaxation with aging time. The permeability as a function of aging time fits the expected form $P=Ae^{(-B/f)}$. The results matched well with the data for different polymer membranes.
Keywords
physical aging; fluorinated polyimide; thin film; refractive index;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 W. J. Koros, B. J. Story, S. M. Jordan, K. O'Brien, and G. R. Husk, Polym. Eng. Sci., 27,603 (1987)
2 M. Wessling, Z. Borneman, T. Van Den Boomgaard, and C. A. Smolders, J. Appl. Polym. Sci., 53, 1497 (1994)
3 M. R. Coleman and W. J. Koros, J. Membr. Sci., 50, 285 (1990)
4 C. Zhou, T.-S. Chung, R. Wang, and S. H. Goh, J. Appl. Polym. Sci., 92, 1758 (2004)   DOI   ScienceOn
5 A. Bos, I.G. M. Punt, M. Wessling, and H. Strathmann, Sep. Pur. Tech., 14, 27 (1998)
6 J. H. Kim, W. J. Koras, and D. R. Paul, Polymer, 47, 3094 (2006)   DOI   ScienceOn
7 R. J. Roe and J. J. Curro, Macromolecules, 16, 428 (1983)
8 M. S. McCaig and D. R. Paul, Polymer, 41, 629 (2000)
9 J. H. Kim, J. Jang, D. Y. Lee, and W. C. Zin, Langmuir, 12, 4064 (2000)
10 E. S. Sanders, J. Membr. Sci., 37, 63 (1988)
11 C. G. Robertson and G. L. Wilkes, Polymer, 39, 2129 (1997)   DOI   ScienceOn
12 J. L. Keddlie and R. A. Cory, Faraday Discuss, 98, 219 (1994)
13 D. W. V Krevelen and H. A. G. Chermin, Langmuir, 62, 65 (1950)
14 M. S. McCaig, D. R. Paul, and J. W. Barlow, Polymer, 41, 639 (2000)
15 Y. Huang and D. R. Paul, Polymer, 45, 8377 (2004)   DOI   ScienceOn
16 F. D. Tsay and A. Gupta, J. Polym. Sci.; Part B: Polym. Phys., 25, 855 (1987)   DOI   ScienceOn
17 J. Y. Park and D. R. Paul, J. Membr. Sci., 125, 23 (1997)
18 P. H. Pframm and W. J. Koros, Polymer, 36, 2379 (1995)
19 J. D. Wind, S. M. Sirard, D. R. Paul, P. F. Green, K. P. Johnston, and W. J. Koros, Macromolecules, 36, 6442 (2003)   DOI   ScienceOn
20 J. S. Royal and J. M. Torkelson, Macromolecules, 25, 4792 (1992)
21 M. R. Coleman and W. J. Koros, Macromolecules, 32, 3106 (1999)
22 Y. Huang and D. R. Paul, J. Membr. Sci., 244, 167 (2004)   DOI