Browse > Article

Thermal and Optical Properties of Heat-Resistant Core Materials in Plastic Optical Fiber  

Lee Gyu-Ho (Polymer Hybrid Research Center, Korea Institute of Science and Technology)
Cho Won-Keun (Polymer Hybrid Research Center, Korea Institute of Science and Technology)
Park Min (Polymer Hybrid Research Center, Korea Institute of Science and Technology)
Lee Hyun-Jung (Polymer Hybrid Research Center, Korea Institute of Science and Technology)
Publication Information
Polymer(Korea) / v.30, no.2, 2006 , pp. 158-161 More about this Journal
Abstract
Recently the application of plastic optical fiber (POF) in automotives and planes demands the heat-resistant and high refractive index con materials. We synthesized polyglutarimides (PGIs) via imidization of PMMA with primary amines under high pressure and high temperature and investigated thermal and optical properties by varying the molar ratio of amines and the type of amines (ethyl amine vs. isopropyl mine). The degree of imidization was calculated based on the peak intensity in $^1H$ NMR and FTIR. We found that the glass transition temperature $(T_g)$ of PGIs increased over $30^{\circ}C$ compared to the traditional core materials in POF, PMMA, and they are stable up to $300\sim400^{\circ}C$. PGIs anthesized with ethyl mine show the better heat resistance than those with isopropyl amines. Additionally, they show the comparable transparency and higher refractive index than PMMA. It implies that they can be utilized as the excellent photo-efficient and heat-resistant core materials in POF.
Keywords
plastic optical fiber (POF); polyglutarimide (PGI); imidization; heat resistance; transparency;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 I. Sasaki, K. Nishida, M. Morimoto, H. Anzal, and H. Makino, US. Patent, 4,908,402(1990)
2 H. M. Zidan and M. Abu-Elnader, Physics, B, 355, 308 (2005)   DOI
3 E. Tampellini, L. Canova, P. Cinquina, and G. Gianotti, Polymer, 35, 367 (1994)   DOI   ScienceOn
4 H.Cherdron, M. J. Brekner, and F. Osan, Angewandte Chemie, 223, 121(1994)
5 Y. C. Lee, H. W. Choi, I. J. Chin, H. Y. Won, and Y. S. Kim, Polymer (Korea), 3, 76 (1995)
6 M. P. Hallden-Abberton and M. Glen, U.S. Patent 1,874,824(1989)
7 R. E. Jerman, W. T. Freed, L. A. Cohen, L. F. Buhse, and G. W. Miller, U.S. Patent 5,159,058 (1992)
8 M. Park, J. K. Kim, and M. S. Lee, Pros. of Ind. Chem., 3, 27 (2000)
9 T. M. Trinka and R. H. Grubbs, Accounts of Chemical Research, 34, 18 (2001)   DOI   ScienceOn
10 Y. Takezawa and S. Ohara, J. Appl. Polym. Sci., 49, 169 (1993)   DOI   ScienceOn
11 Technology roadmap, lTEP, pp 23-33, pp 174-177 (2001)
12 W. Damn, J. Krauser, P. E. Zamzow, and O. Ziemannn, PDF-Polymer Optical FIbers for Data Communication, Springer, Ch3, pp 73 (2001)
13 M. Y. Jin, K. H. Park, and H. K. Chung, Polym. Sci. and Tech., 13, 180 (2002)
14 G. B. Butler, J. Polym. Sci.; Part A: Polym. Chem. Edition., 38, 3451 (2000)   DOI   ScienceOn
15 H. Anzai, H. Makino, I. Sasaki, K. Nishida, and M. Morimoto, U.S. Patent 4,745,159 (1988)
16 Y. Kita, K. Kishino, and K .Nakagawa, Appl. Polym. Sci., 63, 1055 (1997)   DOI   ScienceOn
17 R. Madan, A. Srivastava, R. A. Anand, and I. K. Varma, Prog. Polym. Sci., 23, 663 (1998)
18 C. E. Brown, C. A. Wilkie, J. Smukalla, R. B. Cody, Jr., and J. A. Kinsinger, J. Polym. Sci.; Part A: Polym. Chem., 24, 1297 (1986)   DOI   ScienceOn
19 M. J. Jung, Y. F. Kim, J. B. Kim, M. S. Lee, M. Y. Jin, and M. Park, J. of the Korea Fiber Society, 40, 335 (2003)
20 S. Isao, N, Kozi, and F. Masaharu, U.S. Patent 5,132,371 (1992)
21 R. M. Kopchik, US. Patent 4,246,374 (1981)