Browse > Article

Synthesis and Characterization of Heat Resistant Organophilic Layered Silicate Modified with Oligo(amic acid)s Having Alkyl Side Chains and Their Nanocomposites  

Han Ji Yun (Polymeric Nanomaterials Lab., Korea Research Institute of Chemical Technology)
Won Jong Chan (Polymeric Nanomaterials Lab., Korea Research Institute of Chemical Technology)
Lee Jae Heung (Polymeric Nanomaterials Lab., Korea Research Institute of Chemical Technology)
Suh Kyung-Do (Department of Chemical Engineering, Hanyang University)
Kim Yong Seok (Polymeric Nanomaterials Lab., Korea Research Institute of Chemical Technology)
Publication Information
Polymer(Korea) / v.29, no.5, 2005 , pp. 451-456 More about this Journal
Abstract
In the field of designing of nano-fillers of polyimide nanocomposites, the two strategic points are the heat-resistance and compatibility with polyimide, a matrix polymer. In this study, we designed oligo(amic acid) having alkyl side chains and terminal amine groups to satisfy previous requirements and studied the modification of surface of layered silicates. Oligo(amic acid)s were prepared by the reaction of diamine monomers and PMDA and their molecular weight was controlled in about 2000g/mol. After that, acidification and ion exchange reaction led to the high-temperature organophilic layered silicate (OLS). XRD pauerns of OLS showed the more increased gallery spacing by $4{\AA}$ than that of the pristine layered silicate and the initial decomposition temperatures of OLS were in above $280^{\circ}C$. The polyimide nanocomposite films based on heat resistant OLS showed that the OLSs were well dispersed through the matrix and their CTEs showed a decrease of $26\%$ compared with pristine polyimide films.
Keywords
heat resistance; polyimide; nanocomposite; organophilic layered silicate (OLS).;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Y. Kim, W. H. Goh, T. Chang, C.-S. Ha, and M. Ree, Adv. Eng. Mater., 6, 39 (2004)   DOI   ScienceOn
2 C.-M. Leu, Z.-W. Wu, and K.-H. Wei, Chem. Mater., 14, 3016 (2002)   DOI   ScienceOn
3 H.-L. Tyan, C.-M. Leu, and K.-H. Wei, Chem. Mater., 13, 222 (2001)   DOI   ScienceOn
4 L.- Y. Jiang, C.-M. Leu, and K.-H. Wei, Adv. Mater., 14,426 (2002)   DOI   ScienceOn
5 H. J. Kim, Y. S. Kim, J. C. Won, M. H. Yi, and K.-Y. Choi, Polymer(Korea), 27, 135 (2003)
6 T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, John Wiley & Sons, West Sussex, 2000
7 R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 7990 (1997)   DOI   ScienceOn
8 J. H. Chang, D. K. Park, and K. J. Ihn, J. Appl. Polym. Sci., 84, 2294 (2002)   DOI   ScienceOn
9 M. Pramanik, S. K. Srivastava B. K. Samantarray, and A. K. Bhowmick, J. Polym. Sci.; Part B: Polym. Phys., 40, 2065 (2002)   DOI   ScienceOn
10 A. C. Balazs, C. Singh and E. Zhulina, Macromolecules, 31, 8370 (1998)   DOI   ScienceOn
11 R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997)   DOI   ScienceOn
12 S. U. Lee, I. H. Oh, J. H. Lee, K.-Y. Choi, and S. G. Lee, Polymer(Korea), 29, 271 (2005)
13 H.-L. Tyan, C.-Y. Wu, and K.-H. Wei, J. Appl. Polym. Sci., 81, 1742 (2001)   DOI   ScienceOn
14 S. G. Lyu, D. Y. Park, Y. S. Kim, and Y. C. Lee, G. S. Sur, Polymer(Korea), 26, 375 (2002)
15 C. S. Triantafillidis, P. C. LeBaron, and T. J. Pinnavaia, Chem. Mater., 14, 4088 (2002)   DOI   ScienceOn
16 L. Bes, A. Rousseau, B. Boutevin, and R. Mercier, J. Polym. Sci.; Part A: Polym. Chem., 39, 2602 (2001)   DOI   ScienceOn
17 R. H. Vora, P. K Pallathadka, S. H. Goh, T. -S. Chung, Y. X. Lim, and T. K Bang, Macromol. Mater. Eng., 288, 337 (2003)   DOI   ScienceOn