Browse > Article

Effects of Polyol Types and Hard Segment Contents on the Crystallization of Thermoplastic Polyurethanes  

Kim Sung Geun (Division of Environmental and Chemical Engineering, Chonbuk National University)
Li Ming Ji (Division of Environmental and Chemical Engineering, Chonbuk National University)
Ramesan M. T. (Division of Environmental and Chemical Engineering, Chonbuk National University)
Lee Dae Soo (Division of Environmental and Chemical Engineering, Chonbuk National University)
Publication Information
Polymer(Korea) / v.29, no.2, 2005 , pp. 140-145 More about this Journal
Abstract
Effects of the polyol type and the hard segment content of thermoplastic polyurethane (TPU) on the crystallization of hard segments in TPUs were studied employing differential scanning calorimetry. Diols used for the preparation of TPUs were poly(tetramethylene ether glycol) (PTMEG), poly(propylene glycol) (PPG), polycaprolactone (PCL), poly(butylene adipate) (PBA) the molecular weights of which were 2000 and the hard segments contents of TPUs were $35\~44\;wt\%$. We found that crystallization of hard segments in TPUs were observed at higher temperatures and became faster with increasing hard segment contents of TPUs. The crystallization rate of TPU was also affected by the types of polyols used for the preparation of TPUs. It is postulated that lower miscibility of soft segments and hard segments results in higher crystallization rate and increase of cooling crystallization temperatures due to better hydrogen bending between hard segments in melts.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. Mix, J. Gahde, H. Goering, and G. Schulz, J. Polym. Sci.; Part A: Polym. Chem., 34, 33 (1996)
2 J. Magil and H. Li, J. Polym Sci., Ploym. Lett. Ed., 11, 667 (1973)   DOI
3 R. L. McKiernan, A. M. Heintz, S. L. Hsu, E. D. T. Atkins, J. Penelle, and S. P. Gido, Macromolecules, 35, 6970 (2002)   DOI   ScienceOn
4 S. Velankar and S. L. Cooper, Macromolecules, 32, 395 (2000)
5 C. Hepburn, Polyurethane Elastomer, 2nd Ed., Ch. 9, Elesvier Science Publishers, New York, 1992
6 W. Tang, R. J. Farris, W. J. MacKnight, and C. D. Eisenbach, Macromolecules, 27, 2814 (1994)
7 P. J. Yoon and C. D. Han, Macromolecules, 33, 2171 (2000)
8 A. Gandica and J. Magil, Polymer, 13, 595 (1972)
9 R. L. McKiernan, P. Sikorski, E. D. T. Atkins, S. P. Gido, and J. Penelle, Macromolecules, 35, 8433 (2002)   DOI   ScienceOn
10 W. Tang, W. J. MacKnight, and S. Hsu, Macromolecules, 28, 4284 (1995)
11 B. Wunderlich, in Thermal Characterization of Polymeric Materials, E. A. Turi, Editor, Chapter 2, Academic Press, New York, 1997
12 S. G. Kim and D. S. Lee, Macromol. Res., 10, 365 (2002)
13 J. Magil, Rubber Chem. & Tech., 68, 507 (1995)
14 A. Saiani, C. Rochas, G. Eeckhaut, W. A. Daunch, J. W. Leenslag, and J. S. Higgins, Macromolecules, 37, 1411 (2004)
15 D. J. Martin, G. F. Meijs, G. M. Renwick, S. J. McCarthy, and P. A. Guantilake, J. Appl. Polym. Sci., 62, 1377 (1996)
16 M. Avrami, J. Chem Phys., 7, 1103 (1939)
17 S. Abouzahr, G. L. Wilkes, and Z. Ophir, Polymer, 23, 1077 (1982)
18 G. Oertel, Polyurethane Handbook, 2nd Ed., Ch.2, Hanser Publishers, Munich, 1993
19 M. Szycher, Szycher Handbook of Polyurethane, Ch.1, CRC Press, London, 1999