1 |
Yu. A. Brychkov, On some properties of the Nuttall function Qμ,ν(a, b), Integral Transforms Spec. Funct., 25(1)(2014), 33-43.
|
2 |
Yu. A. Brychkov and N. V. Savischenko, A special function of communication theory, Integral Transforms Spec. Funct., 26(6)(2015), 470-484.
DOI
|
3 |
V. V. Bytev, M. Yu. Kalmykov and S.-O. Moch, HYPERDIRE: HYPERgeometric functions DIfferential REduction: MATHEMATICA based packages for differential reduction of generalized hypergeometric functions: FD and FS Horn-type hypergeometric functions of three variables, Comput Phys. Commun., 185(2014), 3041-3058.
DOI
|
4 |
G. B. Costa and L. E. Levine, Nth-order differential equations with finite polynomial solutions, Int. J. Math. Educ. Sci. Tech., 29(6)(1998), 911-914.
|
5 |
P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison and E. Witten, Quantum fields and strings: a course for mathematicians, American Mathematical Society, 1999.
|
6 |
R. Diaz and E. Pariguan, Quantum symmetric functions, Comm. Algebra, 33(6)(2005), 1947-1978.
DOI
|
7 |
R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15(2)(2007), 179-192.
|
8 |
R. Diaz and C. Teruel, q, k-generalized gamma and beta function, J. Nonlinear Math. Phys., 12(1)(2005), 118-134.
DOI
|
9 |
H. W. Gould, Inverse series relations and other expansions involving Humbert polynomials, Duke Math. J., 32(4)(1965), 697-711.
DOI
|
10 |
F. B. Hildebrand, Introduction to numerical analysis, Second edition, Dover Publications INC., New York, 1987.
|
11 |
P. Humbert, Some extensions of Pincherle's polynomials, Proc. Edinburgh Math. Soc., 39(1)(1920), 21-24.
DOI
|
12 |
P. Humbert, The confluent hypergeometric functions of two variables, Proc. R. Soc. Edinb., 41(1922), 73-96.
DOI
|
13 |
B. A. Kniehl and O. V. Tarasov, Finding new relationships between hypergeometric functions by evaluating Feynman integrals, Nuclear Phys. B, 854(3)(2012), 841-852.
DOI
|
14 |
M. Mignotte and D. Stefanescu, Polynomials: an algorithmic approach, Springer-Verlag, New York, 1999.
|
15 |
G. Ozdemir, Y. Simsek, and G. V. Milovanovic, Generating functions for special polynomials and numbers including Apostol-type and Humbert-type polynomials, Mediterr. J. Math., 14(3)(2017), Paper No. 117, 17 pp.
DOI
|
16 |
G. Polya and G. Szego, Problems and theorems in analysis I, Springer-Verlag, New York-Heidelberg and Berlin, 1972.
|
17 |
E. D. Rainville, Special functions, The Macmillan Company, New York, 1960.
|
18 |
P. C. Sofotasios , T. A. Tsiftsis, Yu. A. Brychkov, et al., Analytic expressions and bounds for special functions and applications in communication theory, IEEE Trans. Inform. Theory, 60(12)(2014), 7798-7823.
DOI
|
19 |
E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge University Press, Cambridge, 1927.
|
20 |
H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis Horwood Limited, John Willey and Sons, 1984.
|