Browse > Article
http://dx.doi.org/10.5666/KMJ.2018.58.4.599

On a Generalization of the Pentagonal Number Theorem  

Leung, Ho-Hon (Department of Mathematical Sciences, United Arab Emirates University)
Publication Information
Kyungpook Mathematical Journal / v.58, no.4, 2018 , pp. 599-613 More about this Journal
Abstract
We study a generalization of the classical Pentagonal Number Theorem and its applications. We derive new identities for certain infinite series, recurrence relations and convolution sums for certain restricted partitions and divisor sums. We also derive new identities for Bell polynomials.
Keywords
integer partition; divisor sum; Bell polynomials; polygonal numbers; pentagonal number theorem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H.-H. Leung, Another identity for complete Bell polynomials based on Ramanujan's congruences, J. Integer Seq., 21(2018), Article 18.6.4, 6 pp.
2 S. Ramanujan and L.J. Rogers, Proof of certain identities in combinatory analysis, Cambr. Phil. Soc. Proc., 19(1919), 211-216.
3 J. Riordan, Combinatorial identities, Robert E. Krieger Publishing Co., Huntington, N.Y., 1979.
4 L.J. Rogers, Third memoir on the expansion of certain infinite products, Proc. London Math. Soc., 26(1894), 15-32.
5 W.Wang and T.Wang, General identities on Bell polynomials, Comput. Math. Appl., 58(1)(2009), 104-118.   DOI
6 G. Andrews, Euler's pentagonal number theorem, Math. Mag., 56(5)(1983), 279-284.   DOI
7 J. Bell, A summary of Euler's work on the pentagonal number theorem, Arch. Hist. Exact Sci., 64(3)(2010), 301-373.   DOI
8 S. Bouroubi and N. Benyahia Tani, A new identify for complete Bell polynomials based on a formula of Ramanujan, J. Integer Seq., 12(2009), Article 09.3.5, 6 pp.
9 T.R. Chandrupatla, A. Hassen and T.J. Osler, Surprising connections between partitions and divisors, College Math. J., 38(4)(2007), 278-287.   DOI
10 W.-S. Chaou, Leetsch C. Hsu and Peter J.-S. Shiue, Application of Faadi Bruno's formula in characterization of inverse relations, J. Comput. Appl. Math., 190(2006), 151-169.   DOI
11 P. Cheung and V. Kac, Quantum calculus, Universitext, Springer-Verlag, New York, 2002.
12 L. Comtet, Advanced combinatorics: The art of finite and infinite expansions, D. Reidel Publishing Co., Dordrecht, 1974.