1 |
A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 73(1-2)(2008), 155-178.
|
2 |
A. Baricz and B. A. Frasin, Univalence of integral operators involving Bessel functions, Appl. Math. Lett., 23(4)(2010), 371-376.
DOI
|
3 |
A. Baricz and S. Ponnusamy, Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Func., 21(9)(2010), 641-653.
DOI
|
4 |
D. Breaz, N. Breaz and H. M. Srivastava, An extension of the univalent condition for a family of integral operators, Appl. Math. Lett., 22(2009), no. 1, 41-44.
DOI
|
5 |
E. Deniz, H. Orhan and H. M. Srivastava, Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions, Taiwanese J. Math., 15(2)(2011), 883-917.
DOI
|
6 |
B. A. Frasin, Sufficient conditions for integral operator defined by Bessel functions, J. Math. Inequal., 4(2)(2010), 301-306.
|
7 |
S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker, Inc., New York, 2000.
|
8 |
N. N. Pascu, An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session: Simion Stoilow (Brasov, 1987), 43-48, Univ. Brasov, Brasov, 1987.
|
9 |
V. Pescar, A new generalization of Ahlfors's and Becker's criterion of univalence, Bull. Malaysian Math. Soc. (2), 19(2)(1996), 53-54.
|
10 |
H. M. Srivastava, E. Deniz and H. Orhan, Some general univalence criteria for a family of integral operators, Appl. Math. Comput., 215(10)(2010), 3696-3701.
DOI
|
11 |
H. M. Srivastava, B. A. Frasin and V. Pescar, Univalence of integral operators involving Mittag-Leffler functions, Appl. Math. Inf. Sci., 11(3)(2017), 635-641.
DOI
|
12 |
H. M. Srivastava, J. K. Prajapat, G. I. Oros and R. Sendrutiu, Geometric properties of a certain general family of integral operators, Filomat, 28(4)(2014), 745-754.
DOI
|
13 |
H. M. Srivastava, K. A. Selvakumaran and S. D. Purohit, Inclusion properties for certain subclasses of analytic functions defined by using the generalized Bessel functions, Malaya J. Mat., 3(3)(2015), 360-367.
|
14 |
L. F. Stanciu, D. Breaz and H. M. Srivastava, Some criteria for univalence of a certain integral operator, Novi Sad J. Math., 43(2)(2013), 51-57.
|
15 |
N. Ularu, Two integral operators defined with Bessel functions on the class N(), J. Basic Apll. Sci., 9(2013), 57-59.
|
16 |
R. Szasz, About the starlikeness of Bessel functions, Integral Transforms Spec. Funct., 25(9)(2014), 750-755.
DOI
|
17 |
R. Szasz and P. A. Kupan, About the univalence of the Bessel functions, Stud. Univ. Babes-Bolyai Math., 54(1) (2009), 127-132.
|