Browse > Article
http://dx.doi.org/10.5757/ASCT.2018.27.1.19

Numerical Analysis of the Incident ion Energy and Angle Distribution in the DC Magnetron Sputtering for the Variation of Gas Pressure  

Hur, Min Young (Department of Electrical and Computer Engineering, Pusan National University)
Oh, Sehun (Department of Electrical and Computer Engineering, Pusan National University)
Kim, Ho Jun (Memory Thin Film Technology Team, Samsung Electronics)
Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
Publication Information
Applied Science and Convergence Technology / v.27, no.1, 2018 , pp. 19-22 More about this Journal
Abstract
The ion energy and angle distributions (IEADs) in the DC magnetron sputtering systems are investigated for the variation of gas pressure using particle-in-cell simulation. Even for the condition of collisionless ion sheath at low pressure, it is possible to change the IEAD significantly with the change of gas pressure. The bombarding ions to the target with low energy and large incident angle are observed at low pressure when the sheath voltage drop is low. It is because the electron transport is hindered by the magnetic field at low pressure because of few collisions per electron gyromotion while the ions are not magnetized. Therefore, the space charge effect is the most dominant factor for the determination of IEADs in low-pressure magnetron sputtering discharges.
Keywords
Magnetron sputtering; Particle-in-cell simulation; Ion energy distribution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. M. Park, D. H. Lee, and M. S. Suh, Appl. Sci. Converge. Technol. 25, 128-132 (2016).   DOI
2 I. Kolev, A. Bogaerts, IEEE T. Plasma Sci. 34, 886-894 (2006).   DOI
3 T. Makabe, T. Yakisawa, Mater. Sci. Forum 555, 65-71 (2007).   DOI
4 Z. Hua-Yu, M. Zong-Xin, Chinese Phys. B 17, 1475-1479 (2008).   DOI
5 V. K. Decyk. T. V. Singh, Comput. Phys. Comm. 185, 708-719 (2014).   DOI
6 C. K. Birdsall, A. b. Langdon, Plasma Physics vis Computer Simulation, Taylor & Francis Group (2005)
7 V. Vahedi, M. Surendra, Comput. Phys. Comm. 87, 179-198 (1995).   DOI
8 P. Sigmund, Phys. Rev. 184, 383-416 (1969).   DOI
9 M. P. Seah, T. S. Nunney, J. Phys. D: Appl. Phys. 43, 253001 (2010).   DOI
10 R. Behrisch and W. Eckstein, Sputtering by particle Bombardment, Springer (2007).
11 Y. Yamamura, H. Tawara, Atom. Data Nucl. Data 62, 149-253 (1996).   DOI
12 V. Vahedi, G. DiPeso, J. Comput. Phys. 131, 149-163 (1997).   DOI
13 P. J. Kelly, and R. D. Arnell, Vaccum 56, 159-172 (2000).   DOI
14 W. Gao and Z. Li, Ceram. Int. 30, 1155-1159 (2004).   DOI
15 K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Tech. 204, 1661-1684 (2010).   DOI
16 K. Ellmer and T. Welzel, J. Mater. Res. 27, 765-779 (2012).   DOI
17 M.-J. Keum and J.-H. Han J. Korean Phys. Soc. 53, 1580-1583 (2008).   DOI
18 H. Ahn, D. Lee and Y. Um, Appl. Sci. Converge. Technol. 26, 11-15 (2017).   DOI
19 S. H. Jeong and J. H. Boo, Thin Solid Films 447-448, 105-110 (2004)   DOI
20 S. Mraz and J. M. Schneider, J. Appl. Phys. 100, 023503 (2006).   DOI
21 H. C. Nguyen, T. T. Trinh, T. Le, C. V. Tran, T. Tran, H. Park, and V. A. Dao, J. Yi, Semicond. Sci. Technol. 26, 105022 (2011).   DOI
22 J. P. Verboncoeur, Plasma, Phys. Controlled Fusion 47, A231 (2005).   DOI
23 C. H. Shon, J. K. Lee, H. J. Lee, Y. Yang, and T. H. Chung, IEEE T. Plasma Sci. 26, 1635-1644 (1998).   DOI
24 C. H. Shon and J. K. Lee, Appl. Surf. Sci. 192, 258-269 (2002).   DOI
25 S. Kuroiwa, T. Mine, T. Yakisawa, T. Makabe, J. Vac. Sci. Technol. B 23, 2218-2221 (2005).   DOI