Browse > Article
http://dx.doi.org/10.5757/ASCT.2017.26.5.129

Controllable Growth of Single Layer MoS2 and Resistance Switching Effect in Polymer/MoS2 Structure  

Park, Sung Jae (Department of Physics and Research Institute for Natural Sciences, Hanyang University)
Chu, Dongil (Department of Physics and Research Institute for Natural Sciences, Hanyang University)
Kim, Eun Kyu (Department of Physics and Research Institute for Natural Sciences, Hanyang University)
Publication Information
Applied Science and Convergence Technology / v.26, no.5, 2017 , pp. 129-132 More about this Journal
Abstract
We report a chemical vapor deposition approach and optimized growth condition to the synthesis of single layer molybdenum disulfide ($MoS_2$). Obtaining large grain size with continuous $MoS_2$ atomically thin films is highly responsible to the growth distance between molybdenum trioxide source and receiving silicon substrate. Experimental results indicate that triangular shape $MoS_2$ grain size could be enlarged up to > 80um with the precisely controlled the source-to-substrate distance under 7.5 mm. Furthermore, we demonstrate fabrication of a memory device by employing poly(methyl methacrylate) (PMMA) as insulating layer. The fabricated devices have a PMMA-$MoS_2$/metal configuration and exhibit a bistable resistance switching behavior with high/low-current ratio around $10^3$.
Keywords
$MoS_2$; CVD; Controllable grain size; Memory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science. 306 (2004) 666.   DOI
2 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Communication, Solid State Commun. 146 (2008) 351.   DOI
3 M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature. 474 (2011) 64.   DOI
4 Q. H. Wang, K. Kalantar-Zadeh, A. Ais, J. N. Coleman & Strano, Nat. Nanotechnol. 699-712 (2012) 7.   DOI
5 M Chhowalla, et al. Nat Chem. 263 (2013) 5.   DOI
6 M. Xu, T. Liang, M. Shi & H. Chen, Chem. Rev. 2766 (2013) 113.
7 R. Ganatra & Zhang, and Q. ACS nano. 4074 (2104) 8.   DOI
8 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6 (2011) 147.   DOI
9 Y. J. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, Small. 8 (2012) 966.   DOI
10 Y. F. Yu, C. Li, Y. Liu, L.Q. Su, Y. Zhang, and L.Y. Cao, Sci. Rep. 3 (2013) 1866.   DOI
11 Y. C. Lin, W. J. Zhang, J. K. Huang, K. K. Liu, Y. H. Lee, C. T. Liang, C. W. Chu, and L. J. Li, Nanoscale. 4 (2012) 6637.   DOI
12 Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mater. 24 (2012) 2320.   DOI
13 A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, Nat Mater. 12 (2013) 554.   DOI
14 R. Gatensby, N. McEvoy, K. Lee, T. Hallam, N.C. Berner, E. Rezvani, S. Winters, M. O'Brien, and G.S. Duesberg, Appl. Surf. Sci. 297 (2014) 139.   DOI
15 J. Z. Ou, A. F. Chrimes, Y. C. Wang, S. Y. Tang, M. S. Strano, and K. Kalantar-zadeh, Nano Lett. 14 (2014) 857.   DOI
16 H. Li, Q. Zhang, C. C. R. Yap. B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillageat, Adv. Funct. Mater. 22 (2012) 1385.   DOI
17 Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Sci. Rep. 3 (2013) 1866.   DOI
18 Y. Lee, J. Lee, H. Bark, I. K. Oh, G. H. Ryu, Z. Lee, H. Kim, J. H. Cho, J. H. Ahn, and C. Lee, Nanoscale. 6 (2014) 2821.   DOI
19 Y. M. Shi, J. K. Huang, L. M. Jin, Y. T. Hsu, S. F. Yu, L. J. Li, and H. Y. Yang, Sci. Rep. 3 (2013) 1839.   DOI
20 Y. J. Yun, C. pearson, and M. C. Petty, J. Appl. Phys. 105 (2009) 034508.   DOI