Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.6.149

Effect of Surface Treatment on the Formation of NiO Nanomaterials by Thermal Oxidation  

Hien, Vu Xuan (School of Engineering Physics, Hanoi University of Science and Technology)
Heo, Young-Woo (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Applied Science and Convergence Technology / v.25, no.6, 2016 , pp. 149-153 More about this Journal
Abstract
Thermal oxidation has significant potential for use in synthesizing metal-oxide nanostructures from metallic materials. However, this method has limited applicability to the synthesis of multi-morphology NiO from Ni foil. Techniques consisting of mechanical and chemical approaches were used to pre-treat the Ni foil (prior to oxidation) to promote the formation of nanowires and nanoplates on the NiO layer. These morphologies were realized on the Ni foils scratched by sand paper and a knife, respectively, and subsequently heat-treated at $500^{\circ}C$ for 24 h. Small nanowires (diameter: <10 nm) formed on the Ni foil treated by absolute $HNO_3$ and then oxidized at $500^{\circ}C$ for 24 h. The formation of various morphologies (on the pre-treated Ni foil), which differ from that formed in the case of pristine Ni foil after oxidation, may be attributed to the surface melting phenomenon that occurs during the nucleation process.
Keywords
NiO; Thermal oxidation; Surface treatment; Nanowires; Nanoplates;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. Varghese, M. V. Reddy, Z. Yanwu, C. S. Lit, T. C. Hoong, G. V. S. Rao, B. V. R. Chowdari, A. T. S. Wee, C. T. Lim, and C.-H. Sow. Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery. Chem. Mater. vol. 20, 3360 (2008).   DOI
2 C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, J. Zheng, and G. Lu. Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens. Actuators, B vol. 220, 59 (2015).   DOI
3 Z. Wang, J. Cui, J. Li, K. Cao, S. Yuan, Y. Cheng, and M. Wang. Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells. Mater. Sci. Eng., B vol. 199, 1 (2015).   DOI
4 Z. Skoufa, E. Heracleous, and A. A. Lemonidou. On ethane ODH mechanism and nature of active sites over NiO-based catalysts via isotopic labeling and methanol sorption studies. J. Catal. vol. 322, 118 (2015).   DOI
5 K. Sekiya, K. Nagato, T. Hamaguchi, and M. Nakao. Morphology control of nickel oxide nanowires. Microelectron. Eng. vol. 98, 532 (2012).   DOI
6 X. Jiang, T. Herricks, and Y. Xia. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. vol. 2, 1333 (2002).   DOI
7 Y. Zhu, and C. H. Sow. Hot plate technique for nanomaterials. Cosmos vol. 4, 235 (2008).   DOI
8 L. Yuan, Y. Wang, R. Mema, and G. Zhou. Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. vol. 59, 2491 (2011).   DOI
9 V. X. Hien, S.-Y. Kim, J.-H. Lee, J.-J. Kim, and Y.-W. Heo. Growth of CuO nanowires on graphene-deposited Cu foil by thermal oxidation method. J. Cryst. Growth vol. 384, 100 (2013).   DOI
10 Y.-W. Heo, S. J. Pearton, and D. P. Norton. Size-Dependent UV Photosensitivity of Indium Zinc Oxide. Journal of Nanoelectronics and Optoelectronics vol. 5, 143 (2010).   DOI
11 V. X. Hien, J.-L. You, K.-M. Jo, S.-Y. Kim, J.-H. Lee, J.-J. Kim, and Y.-W. Heo. $H_2S$-sensing properties of $Cu_2O$ submicron-sized rods and trees synthesized by radio-frequency magnetron sputtering. Sensors and Actuators B: Chemical vol. 202, 330 (2014).   DOI
12 Y. Zhang. Thermal oxidation fabrication of NiO film for optoelectronic devices. Appl. Surf. Sci. vol. 344, 33 (2015).   DOI
13 T. Ogino, M. Yamauchi, Y. Yamamoto, K. Shimomura, and T. Waho. Preheating temperature and growth temperature dependence of InP nanowires grown by self-catalytic VLS mode on InP substrate. J. Cryst. Growth vol. 414, 161 (2015).   DOI
14 M. L. Zhong, D. C. Zeng, Z. W. Liu, H. Y. Yu, X. C. Zhong, and W. Q. Qiu. Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater. vol. 58, 5926 (2010).   DOI
15 A. Khan, and C. Jacob. Random and self-aligned growth of 3C-SiC nanorods via VLS-VS mechanism on the same silicon substrate. Mater. Lett. vol. 135, 103 (2014).   DOI
16 X. Rong, F. Qiu, J. Qin, H. Zhao, J. Yan, and D. Yang. A facile hydrothermal synthesis, adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of NiO/graphene nanosheets adsorbent. J. Ind. Eng. Chem. vol. 26, 354 (2015).   DOI
17 M.- H. Chu, S.- Y. Kim, S.- Y. Sung, J.- H. Lee, J.- J. Kim, D. P. Norton, S. J. Pearton, and Y.- W. Heo. Catalyst-Free Patterned Growth of Well-Aligned ZnO Nanowires on ITO Substrates Using an Aqueous Solution Method and Lithography Process. Journal of Nanoelectronics and Optoelectronics vol. 5, 186 (2010).   DOI
18 B. Varghese, T. C. Hoong, Z. Yanwu, M. V. Reddy, B. V. R. Chowdari, A. T. S. Wee, T. B. C. Vincent, C. T. Lim, and C.-H. Sow. $Co_3O_4$ Nanostructures with Different Morphologies and their Field-Emission Properties. Adv. Funct. Mater. vol. 17, 1932 (2007).   DOI
19 T. Yu, Y. Zhu, X. Xu, K.-S. Yeong, Z. Shen, P. Chen, C.-T. Lim, J. T.-L. Thong, and C.-H. Sow. Substrate-Friendly Synthesis of Metal Oxide Nanostructures Using a Hotplate. Small vol. 2, 80 (2006).   DOI
20 M. Farhan, M. A. Khan, and T. P. Hogan. Large scale, low temperature hotplate synthesis of germanium dioxide nanowires. J. Alloys Compd. vol. 508, L21 (2010).   DOI
21 D. Zappa, D. Briand, E. Comini, J. Courbat, N.F. de Rooij, and G. Sberveglieri. Zinc oxide nanowires deposited on polymeric hotplates for low-power gas sensors. Procedia Eng. vol. 47, 1137 (2012).   DOI