Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.6.103

Nanovesicles: Diagnostic and Therapeutic Tools in Nanoscale Medicine  

Kim, Minji (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Moonjeong (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Kwang-sun (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
Publication Information
Applied Science and Convergence Technology / v.25, no.6, 2016 , pp. 103-107 More about this Journal
Abstract
The use of nanovesicles (NVs) has contributed to nanotechnology in the development of new concept medicine to compete with diseases of deleterious and infectious to human health. Due to their properties of size, morphology, and biocompatibility NVs have great impact on public health especially in the development of new therapeutic and prophylaxis approaches in addition to the device for biosensors to diagnose human diseases. Recent data also strongly suggest that NVs are regarded as innovative materials in developing for vaccines and diagnostic tools. In this review, we focus on the basic concepts and recent applications of NVs to utilize or engineer them as therapeutic materials.
Keywords
Nanovesicles; Diagnosis; Therapy; Vaccine; Cancer; Drug delivery;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. H. Kim, J. Lee, J. Park, and Y. S. Gho, Gram-negative and Gram-positive bacterial extracellular vesicles, Cell Dev. Biol. 40, 97 (2015).   DOI
2 L. Brown, J. M. Wolf, R. Prados-Rosales, and A. Casadevall, Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi, Nat. Rev. Microbiol. 13, 620 (2015).   DOI
3 M. Toyofuku, Y. Tashiro, Y. Hasegawa, M. Kurosawa, and N. Nomura, Bacterial membrane vesicles, an overlooked environmental colloid: Biology, environmental perspectives and applications, Advances in Colloid and Interface Science 226, 65 (2015).   DOI
4 R. I. Koning et al., Cryo-electron tomography analysis of membrane vesicles from Acinetobacter baumannii $ATCC19606^T$, Res. Microbiol. 164, 397 (2013).   DOI
5 M. J. Kuehn and N. C. Kesty, Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19, 2645 (2005).   DOI
6 S. R. Schooling and T. J. Beveridge, Membrane vesicles: an overlooked component of the matrices of biofilms, J. Bacteriol. 188, 5945 (2006).   DOI
7 B. Gyorgy, et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cell. Mol. Life Sci. 68, 2667 (2011).   DOI
8 S. E. L. Andaloussi, I. Mager, X. O. Breakefield, and M. J. Wood, Extracellular vesicles: biology and emerging therapeutic opportunities, Nat. Rev. Drug Discov. 12, 347 (2013).   DOI
9 R. Crescitelli et al., Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes, J. Extracell. Vesicles 2, 1 (2012).
10 S. Roier et al., A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria, Nat. Commun. 7, 10510 (2016).   DOI
11 A. Bergsmedh et al., Horizontal transfer of oncogenes by uptake of apoptotic bodies, Proc. Natl. Acad. Sci. U.S.A. 98, 6407 (2001).   DOI
12 D. Ha, N. Yang, and V. Nadithe, Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges, Acta. Pharmaceutica Sinica. B 6, 287 (2016).   DOI
13 M. Bellone et al., Processing of engulfed apoptotic bodies yields T cell epitopes, J. Immunol. 159, 5391 (1997).
14 B. A. Cocca, A. M. Cline, and M. Z. Radic, Blebs and apoptotic bodies are B cell autoantigens. J. Immunol. 169, 159 (2002).   DOI
15 B. Gyorgy et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cell. Mol. Life Sci. 68, 2667 (2011).   DOI
16 T. Bridget et al., Microvesicle cargo and function changes upon induction of cellular transformation, J. Biol. Chem. 291, 19774 (2016).   DOI
17 R. M. Johnstone, Revisiting the road to the discovery of exosomes, Blood Cells Mol. Dis. 34, 214 (2005).   DOI
18 A. V. Vlassov, S. Magdaleno, R. Setterquist, and R. Conrad, Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials, Biochim. Biophys. Acta 1820, 940 (2012).   DOI
19 P. D. Robbins and A. E. Morelli, Regulation of immune responses by extracellular vesicles, Nat. Rev. Immunol. 14, 195 (2014).   DOI
20 G. Raposo and W. Stoorvoge, Extracellular vesicles: exosomes, microvesicles, and friends, J. Cell Biol. 200, 373 (2013).   DOI
21 A. F. Ellen, B. Zolghadr, A. M. Driessen, and S. V. Albers, Shaping the archaeal cell envelope, Archaea, 608243, (2010).
22 M. F. Haurat, W. Elhenawy, and M. F. Feldman, Prokaryotic membrane vesicles: New insights on biogenesis and biological roles, Biol. Chem. 396, 95 (2015).
23 E. Y. Lee et al., Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles, Proteomics 9, 5425 (2009).   DOI
24 A. F. Ellen et al., Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13, 67 (2009).   DOI
25 Y. Lee, S. El Andaloussi, and M. J. Wood, Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy, Hum. Mol. Genet. 21, 125 (2012).   DOI
26 Y. J. Yoon, O. Y. Kim, and Y. S. Gho, Extracellular vesicles as emerging intercellular communicasomes, BMB Rep. 47, 531 (2014).   DOI
27 E. Torres-Sangiao, A. M. Holban, and M. C. Gestal, Advaced nanobiomaterials: vaccines, diagnosis and treatment of infectious diseases, Molecules 21, 1 (2016).
28 B. M. Bella, I. D. Kirka, S. Hiltbrunner, S. Gabrielsson, and J. J. Bultema, Designer exosomes as next-generation cancer immunotherapy, Nanomedicine 12, 163 (2016).   DOI
29 J. Rivera et al., Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins, Proc. Natl. Acad. Sci. U.S.A. 107, 19002 (2010).   DOI
30 A. Olaya-Abril et al., Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae, J. Proteomics 106, 46 (2014).   DOI
31 E. V. Batrakova, Using exosomes, naturally-equipped nanocarriers, for drug delivery, J. Control. Release 219, 396 (2015).   DOI
32 W. H. Lee et al., Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity, Exp. Mol. Med. 47, e183 (2015).   DOI
33 X. Liang et al., Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery, Biomaterials 82, 194 (2016).   DOI
34 S. Ohno, G. P. Drummen, and M. Kuroda, Focus on extracellular vesicles: development of extracellular vesicle-based therapeutic systems, Int. J. Mol. Sci. 17, 172 (2016).   DOI
35 A. Thind and C. Wilson, Exosomal miRNAs as cancer biomarkers and therapeutic targets, J. Extracell. Vesicles 5, 31292 (2016).   DOI
36 B. K. Thakur, et al., Double-stranded DNA in exosomes: a novel biomarker in cancer detection, Cell Res. 24, 766 (2014).   DOI
37 G. Rabinowits, C. Cicek Gercel-Taylor, J. M. Day, D. D. Taylor, and G. H. Kloecker, Exosomal microRNA: a diagnostic marker for lung cancer, Clin.Lung Cancer 10, 42 (2009).   DOI
38 Douglas D. Taylor, Cicek Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer, Gynecol. Oncol. 110, 13 (2008).   DOI
39 J. L. Welton, et al., Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients using a multiplex, aptamer-based protein array, J. Extracell. Vesicles 5, 31209 (2016).   DOI
40 G. Vernikos and D. Medini, Bexsero(R) chronicle, Pathog Glob. Health 108, 305 (2014).   DOI
41 M. Herreros-Villanueva and L. Bujanda, Glypican-1 in exosomes as biomarker for early detection of pancreatic cancer, Ann. Transl. Med. 4, 64 (2016).   DOI
42 H. Zhou, et al., Exosomal fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury, Kidney Int. 70, 1847 (2006).   DOI
43 J. H. Lim et al., Nanovesicle-Based Bioelectronic Nose for the Diagnosis of Lung Cancer from Human Blood, Adv. Healthcare. Mater. 3, 360 (2014).   DOI