Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.2.32

Fabrication of Ultra-smooth 10 nm Silver Films without Wetting Layer  

Devaraj, Vasanthan (Department of Physics, Chungnam National University)
Lee, Jongmin (Department of Physics, Chungnam National University)
Baek, Jongseo (Department of Physics, Chungnam National University)
Lee, Donghan (Department of Physics, Chungnam National University)
Publication Information
Applied Science and Convergence Technology / v.25, no.2, 2016 , pp. 32-35 More about this Journal
Abstract
Using conventional deposition techniques, we demonstrate a method to fabricate ultra-smooth 10 nm silver films without using a wetting layer or co-depositing another material. The argon working pressure plays a crucial role in achieving an excellent surface flatness for silver films deposited by DC magnetron sputtering on an InP substrate. The formation of ultra-smooth silver thin films is very sensitive to the argon pressure. At the optimum deposition condition, a uniform silver film with an rms surface roughness of 0.81 nm has been achieved.
Keywords
Silver; Ultra-thin; Surface roughness; Sputtering; Atomic force microscopy; Nanophotonics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534-537 (2005).   DOI
2 P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Wang, Appl. Phys. Lett. 96, 043102 (2010).   DOI
3 X. Zhang, and Z. Liu, Nat. Mater. 7, 435-441 (2008).   DOI
4 Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moschalkov, P. V. Dorpe, P. Norlander, and S. A. Maier, ACS Nano 4, 1664-1670 (2010).   DOI
5 J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376-379 (2008).   DOI
6 H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, Science 336, 205-209 (2012).   DOI
7 Y. J. Lu, J. Kim, H.Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, Science 337, 450-453 (2012).   DOI
8 P. B. Johnson, and R. W. Christy, Phys. Rev. B 6, 4370 (1972).   DOI
9 M. Specht, J. D. Pedarnig, W. H. Heckl, and T. W. Hansch, Phys. Rev. Lett. 68, 476 (1992).   DOI
10 H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, Opt. Express 15, 1076-1083 (2007).   DOI
11 S. B. Sant, K. S. Gill, and R. E. Burell, Acta Biomater. 3, 341-350 (2007).   DOI
12 F. Jing, H. Tong, L. Kong, and C. Wang, Appl. Phys. A-Mater. 80, 597-600 (2005).   DOI
13 Y. Chi, E. Lay, T. Y. Chou, Y. H. Song, and A. J. Carty, Chem. Vap. Depos. 11, 206-212 (2005).   DOI
14 R. S. Sennett and G. D. Scott, J. Opt. Soc. Am. A 40, 203-211 (1950).   DOI
15 R. Lazzari and J. Jupille, Surf. Sci. 482-485, 823-828 (2005).
16 V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, Nano Lett. 9, 178-182 (2009).   DOI
17 W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, Opt. Express 18, 5124-5134 (2010).   DOI
18 W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildshev, and V. M. Shalaev, Appl. Phys. Lett. 97, 211107 (2010).   DOI
19 N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, ACS Appl. Mater. Interfaces 5, 3048-3053 (2013).   DOI
20 H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, ACS Nano 4, 3139-3146 (2010).   DOI
21 C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, Adv. Mater. 26, 5696-5701 (2014).   DOI
22 N. E. Duygulu, A. O. Kodolbas, and A. Ekerim, J. Cryst. Growth. 394, 116-125 (2014).   DOI