Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.1.15

Plasma Corrosion in Oxalic Acid Anodized Coatings Depending on Tartaric Acid Content  

Shin, Jae-Soo (Department of Materials Science and Engineering, Daejeon University)
Song, Je-Boem (Vacuum Center, Korea Research Institute of Standards and Science)
Choi, Sin-Ho (Department of Materials Science and Engineering, Daejeon University)
Kim, Jin-Tae (Vacuum Center, Korea Research Institute of Standards and Science)
Oh, Seong-Geun (Department of Chemical Engineering, Hanyang University)
Yun, Ju-Young (Vacuum Center, Korea Research Institute of Standards and Science)
Publication Information
Applied Science and Convergence Technology / v.25, no.1, 2016 , pp. 15-18 More about this Journal
Abstract
Study investigated the optimal anodizing conditions for fabricating an oxide film that produces less contamination in a corrosive plasma environment, using oxalic acid and tartaric acid. Oxide films were produced using sulfuric acid, oxalic acid, and tartaric acid electrolyte mixtures with various mole ratios. The oxide film made by adding 0.05M tartaric acid to 0.3M oxalic acid showed higher breakdown voltage and lower leakage current. Additionally, contamination particles were reduced during plasma etching, thus demonstrates that this mixture presented optimal conditions. However, higher tartaric acid content (0.1 M, 0.15 M) led to lower breakdown voltages and higher leakage currents. Also, it resulted in more cracking during thermal shock tests as well as the generation of more contamination particles during plasma processing.
Keywords
plasma corrosion; etching; particle monitoring; anodizing; anodic film; tartaric acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Bautista, J. A. Gonzalez, and V. Lopez, Surf. Coat. Technol. 154, 49 (2002).   DOI
2 W. Bensalah, K. Elleuch, M. Feki, M. Wery, and H. F. Ayedi, Surf. Coat. Technol. 201, 7855 (2007).   DOI
3 H. H. Shih, and S. L. Tzou, Surf. Coat. Technol. 124, 278 (2000).   DOI
4 L. Domingues, J. C. S. Fernandes, M. D. C. Belo, M. G. S. Ferreira, and L.G. Rosa, Corros. Sci. 45, 149 (2003).   DOI
5 I. Tsangaraki-Kaplanoglou, S. Theohari, Th. Dimogerontakis, Y. M. Wang, H. H. Kuo, and S. Kia, Surf. Coat. Technol. 200, 2634 (2006).   DOI
6 I. H. Chang, D.Y. Jung, and J. S. Gook, J. Kor. Inst. Surf. Eng. 45, 5 (2012).
7 J. B. Song, J. T. Kim, S. G. Oh, J. S. Shin, J. R. Chun, and J. Y. Yun, Sci. Adv. Mater. 7, 127 (2015).   DOI
8 EU Patent, EP 2055 810A2, (2009).
9 M. Garcia-Rubio, P. Ocon, M. Curioni, G. E. Thompson, P. Skeldon, A. Lavia, and I. Garcia, Corros. Sci. 52, 2219 (2010).   DOI
10 M. Garcia-Rubio, M.P. de Lara, P. Ocon, S. Diekhoff, M. Beneke, A. Lavia, and I. Garcia, Electrochim. Acta. 54, 4789 (2009).   DOI
11 K. M. Takahashi, and J. E. Daugherty, J. Vac. Sci. A 14, 2983 (1996).   DOI
12 J. Ren, and Y. Zuo, Appl. Surf. Sci. 261, 193 (2012).   DOI
13 L. Woo, S. Kathrin, S. Martin, P. Eckhard, S. Roland, and G. Ulrich, Nature Nanotech., 3, 234 (2008).   DOI