Browse > Article
http://dx.doi.org/10.12989/smm.2021.8.3.279

Monitoring the required energy for the crack propagation of fiber-reinforced cementitious composite  

Mirzamohammadi, Sajjad (Department of structural Engineering, Tarbiat Modares University)
Mazloom, Moosa (Department of Civil Engineering, Shahid Rajaee Teacher Training University)
Publication Information
Structural Monitoring and Maintenance / v.8, no.3, 2021 , pp. 279-294 More about this Journal
Abstract
In this paper, the results of experimental work on the required energy for the crack propagation (fracture energy), rupture modulus and compressive strength of fiber-reinforced cementitious composite (FRCC) with different types of fibers after exposure to 20℃, 100℃ and 300℃ are investigated. The experimental part of the work is divided into the following stages: the effects of sub-elevated temperatures and fiber types on the fracture and mechanical behaviors of FRCC; finding a relation between the fracture energy and mechanical properties of the specimens based on I-optimal design of response surface methodology (RSM-I-optimal). Specifically, the analysis of variance (ANOVA) was examined to evaluate the influences of compressive strength and rupture modulus on the required energy for the crack propagation. For this purpose, three monotype fiber reinforced mixes have been prepared. The utilized fibers were aramid, basalt and glass. Additionally, the predictive efficiency of the RSM model was studied based on the normalized goodness-of-fit statistics (Nash & Sutcliffe coefficient of efficiency, NSE). The main finding was that both compressive strength and rupture modulus had considerable influences on the fracture energy. However, the effect of rupture modulus was far greater than compressive strength. In terms of NSE value, the model predictive efficiency was good for fracture energy.
Keywords
monotype fibers; analysis of variance; rupture modulus; crack propagation; fracture energy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alsanusi, S. and Bentaher, L. (2015), "Prediction of compressive strength of concrete from early age test result using design of experiments (RSM)", Int. J. Civil Environ. Struct. Constr. Archit. Eng., 9(12), 1559-1563.
2 Awolusi, T.F., Oke, O.L., Akinkurolere, O.O. and Sojobi, A.O. (2019), "Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fiber extracted from waste tires with limestone powder as filler", Case Studies Constr. Mater., 10, e00212. https://doi.org/10.1016/j.cscm.2018.e00212   DOI
3 Sahmaran, M. and Li, V.C. (2007), "De-icing salt scaling resistance of mechanically loaded engineered cementitious composites", Cement Concrete Res., 37, 1035-1046. https://doi.org/10.1016/j.cemconres.2007.04.001   DOI
4 Salehi, H. and Mazloom, M. (2019a), "Opposite effects of ground granulated blast-furnace slag and silica fume on the fracture behavior of self-compacting lightweight concrete", Constr. Build. Mater., 222, 622-632. https://doi.org/10.1016/j.conbuildmat.2019.06.183   DOI
5 Afzali-Naniz, O. and Mazloom, M. (2019a), "Assessment of the influence of micro- and nano-silica on the behavior of self-compacting lightweight concrete using full factorial design", Asian J. Civil Eng., 20, 57-70. https://doi.org/10.1007/s42107-018-0088-2   DOI
6 BSI 1881: part 111. (1983), Method of testing concrete, British Standards.
7 Karamloo, M., Mazloom, M. and Payganeh, G. (2016), "Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete", Constr. Build. Mater., 123, 508-515. https://doi.org/10.1016/j.conbuildmat.2016.07.061   DOI
8 Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the Indirect Tensile Strength of Self Compacting Concrete Using Artificial Neural Networks", Comput. Concrete, Int. J., 12(3), 285-301. https://doi.org/10.12989/cac.2013.12.3.285   DOI
9 Yang, E. and Li, V.C. (2010), "Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model", Constr. Build. Mater., 24, 130-139. https://doi.org/10.1016/j.conbuildmat.2007.05.014   DOI
10 Mazloom, M. and Mirzamohammadi, S. (2021a), "Fracture of fibre-reinforced cementitious composites after exposure to elevated temperatures", Mag. Concrete Res., 73(14), 701-713. https://doi.org/10.1680/jmacr.19.00401   DOI
11 Jimma, B.E. and Rangaraju, P.R. (2015), "Chemical admixtures dose optimization in pervious concrete paste selection-A statistical approach", Constr. Build. Mater., 101, 1047-1058. https://doi.org/10.1016/j.conbuildmat.2015.10.003   DOI
12 Karamloo, M., Mazloom, M. and Payganeh, G. (2017), "Effect of size on nominal strength of self-compacting lightweight concrete and self-compacting normal weight concrete: A stress-based approach", Mater. Today Commun, 13, 36-45. https://doi.org/10.1016/j.mtcomm.2017.08.002   DOI
13 Mazloom, M. (2008), "Estimating long-term creep and shrinkage of high-strength concrete", Cem. Concrete Compos., 30(4), 316-326. https://doi.org/10.1016/j.cemconcomp.2007.09.006   DOI
14 Mazloom, M. and Ranjbar, A. (2010), "Relation between the workability and strength of self-compacting concrete", Proceedings of the 35th Conference on Our World in Concrete & Structures, Singapore, pp. 315-322.
15 Mazloom, M., Homayooni, S.M. and Miri, S.M. (2018a), "Effect of rock flour type on rheology and strength of self-compacting lightweight concrete", Comput. Concrete, Int. J., 21(2), 199-207. https://doi.org/10.12989/cac.2018.21.2.199   DOI
16 Mo, K.H., Loh, Z.P. and Tan, C.G., Alengaram, U.J. and Yap, S.P. (2018), "Behavior of fiber-reinforced cementitious composite containing high-volume fly ash at elevated temperatures", Sadha, 43(11), 1-8. https://doi.org/10.1007/s12046-018-0937-4   DOI
17 Mazloom, M. and Mirzamohammadi, S. (2019), "Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers", Adv. Mater. Res., Int. J., 8(2), 137-154. http://dx.doi.org/10.12989/amr.2019.8.2.137   DOI
18 Yu, J., Weng, W. and Yu, K. (2014), "Effect of different cooling regimes on the mechanical properties of cementitious composites subjected to high temperatures". https://doi.org/10.1155/2014/289213   DOI
19 ASTM C1609/M-05 (2006), Standard Test Method for Flexural Performance of Fiber Reinforced Concrete (using Beam with Third-point loading), ASTM International, West Conshohocken, PA, USA.
20 Mazloom, M., Soltani, A., Karamloo, M., Hasanloo, A. and Ranjbar, A. (2018b), "Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete", Adv. Mater. Res., Int. J., 7(1), 407-434. https://doi.org/10.12989/amr.2018.7.1.045   DOI
21 Mohammed, B.S., Khed, V.C. and Nuruddin, M.F. (2018), "Rubbercrete mixture optimization using response surface methodology", J. Cleaner Prod., 171, 1605-1621. https://doi.org/10.1016/j.jclepro.2017.10.102   DOI
22 Dias, W.P.S., Khoury, G.A, and Sullivan, P.J.E. (1990), "Mechanical properties of hardened cement paste exposed to temperatures up to 700℃ (1292°F)", ACI Mater., 87, 160-166.
23 Hillerborg, A. (1985), "The theoretical basis of a method to determine the fracture energy GF of concrete", Mater. Struct., 18(4), 291-296. https://doi.org/10.1007/BF02472919   DOI
24 Karamloo, M. and Mazloom, M. (2018), "An efficient algorithm for scaling problem of notched beam specimens with various notch to depth ratios", Comput. Concrete, Int. J., 22(1), 39-51. http://dx.doi.org/10.12989/cac.2018.22.1.039   DOI
25 Sahmaran, M., Lachemi, M. and Li, V.C. (2010), "Assessing Mechanical Properties and Microstructure of Fire-Damaged Engineered Cementitious Composites", ACI Mater., 107(3), 297-304. https://doi.org/10.14359/51663759   DOI
26 Afzali-Naniz, O. and Mazloom, M. (2019b), "Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica", Adv. Struct. Eng., 22(10), 2264-2277. https://doi:10.1177/1369433219837426   DOI
27 Murray, C.A., Snyder, K.S. and Marion, B.A. (2014), "Characterization of permeable pavement materials based on recycled rubber and chitosan", Constr. Build. Mater., 69, 221-231. https://doi.org/10.1016/j.conbuildmat.2014.07.047   DOI
28 Nikbin, I.M., Davoodi, M.R., Fallahnejad, H. and Rahimi, S. (2016), "Influence of mineral powder content on the fracture behaviors and ductility of self-compacting concrete", J. Mater. Civil Eng., 28(3), 04015417. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001404   DOI
29 Rezaifar, O., Hasanzadeh, M. and Gholhaki, M. (2016), "Concrete made with hybrid blends of crumb rubber and metakaolin: Optimization using Response Surface Method", Constr. Build. Mater., 123, 59-68. https://doi.org/10.1016/j.conbuildmat.2016.06.047   DOI
30 Ritter, A. and Munoz-Carpena, R. (2013), "Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments", J. Hydrol., 480, 33-45. https://doi.org/10.1016/j.jhydrol.2012.12.004   DOI
31 Sahmaran, M., Ozbay, E., Yucel, H.E., Lachemi, M. and Li, V.C. (2011), "Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures", J. Mater. Civil Eng., 23, 1735-1745. https://doi/10.1061/%28ASCE%29MT.1943-5533.0000335   DOI
32 Salehi, H. and Mazloom, M. (2018), "Effect of magnetic-field intensity on fracture behaviors of self-compacting lightweight concrete", Mag. Concrete Res., 71(13), 665-679. https://doi.org/10.1680/jmacr.17.00418   DOI
33 Mazloom, M. and Miri, M.S. (2017), "Interaction of magnetic water, silica fume and superplasticizer on fresh and hardened properties of concrete", Adv. Concrete Constr., Int. J., 5(2), 87-99. https://doi.org/10.12989/acc.2017.5.2.087   DOI
34 Salehi, H. and Mazloom, M. (2019b), "An experimental investigation on fracture parameters and brittleness of self-compacting lightweight concrete containing magnetic field treated water", Arch. Civil Mech. Eng., 19, 803-819. https://doi.org/10.1016/j.acme.2018.10.008   DOI
35 Khoury, G.A. (1992), "Compressive strength of concrete at high temperatures: a reassessment", Mag. Concrete Res., 161, 291-309. https://doi.org/10.1680/macr.1992.44.161.291   DOI
36 Li, V.C. (2008), "Durability of mechanically loaded engineered cementitious composites under highly alkaline environments", 30, 72-81. https://doi.org/10.1016/j.cemconcomp.2007.09.004   DOI
37 Wang, Y.C., Zhang, B.J and Hao, S.W. (2016), "Time - dependent brittle creep-relaxation failure in concrete", Mag. Concrete Res., 68(13), 692-700. https://doi.org/10.1680/jmacr.15.00186   DOI
38 Mazloom, M., Allahabadi, A. and Karamloo, M. (2017), "Effect of silica fume and polyepoxide-based polymer on electrical resistivity", Adv. Concrete Constr., Int. J., 5(6), 587-611. https://doi.org/10.12989/acc.2017.5.6.587   DOI
39 Mazloom, M., Pourhaji, P., Shahveisi, M. and Jafari, S.H. (2019), "Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves", Struct. Eng. Mech., Int. J., 72(1), 845-859. https://doi.org/10.12989/sem.2019.72.1.083   DOI
40 Morsy, M.S., Abbas, H. and Alsayed, S.H. (2012), "Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures", Constr. Build. Mater., 35, 900-905. https://doi.org/10.1016/j.conbuildmat.2012.04.099   DOI
41 Yu, J., Lin, J., Zhang, Z. and Li, V.C. (2015), "Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures", Constr. Build. Mater., 99, 82-89. https://doi.org/10.1016/j.conbuildmat.2015.09.002   DOI
42 Mazloom, M. and Mirzamohammadi, S. (2021b), "Computing the fracture energy of fiber reinforced cementitious composites using response surface methodology", Adv. Comput. Des., Int. J., 6(3), 225-239. http://dx.doi.org/10.12989/acd.2021.6.3.225   DOI
43 Tyagi, M., Rana, A., Kumari, S. and Jagadevan, S. (2018), "Adsorptive removal of cyanide from coke oven wastewater onto zero-valent iron: Optimization through response surface methodology, isotherm and kinetic studies", J. Cleaner Prod., 178, 398-407. https://doi.org/10.1016/j.jclepro.2018.01.016   DOI
44 Afzali-Naniz, O. and Mazloom, M. (2018), "Effects of colloidal nano-silica on fresh and hardened properties of self-compacting lightweight concrete", J. Build. Eng., 20, 400-410. https://doi.org/10.1016/j.jobe.2018.08.014   DOI
45 Al-alaily, H.S. and Hassan, A.A. (2016), "Refined statistical modeling for chloride permeability and strength of concrete containing metakaolin", Constr. Build. Mater., 114, 564-579. https://doi.org/10.1016/j.conbuildmat.2016.03.187   DOI
46 Simsek, B., Uygunoglub, T., Korucua, H.M. and Kocakerim, M.M. (2018), "Analysis of the effects of dioctyl terephthalate obtained from polyethylene terephthalate wastes on concrete mortar: A response surface methodology-based desirability function approach application", J. Cleaner Prod., 170, 437-445. https://doi.org/10.1016/j.jclepro.2017.09.176   DOI
47 Zhang, Y., Liu, Z. and Yao, L. (2019), "Mechanical properties of high-ductility cementitious composites with methyl silicone oil", Mag. Concrete Res., 72(14), 747-756. https://doi.org/10.1680/jmacr.18.00192   DOI