Small creatures can lift more than their own bodyweight and a human cannot-an explanation through structural mechanics |
Balamonica, K
(Department of Civil and Environmental Engineering, National University of Singapore)
Jothi Saravanan, T. (Department of Civil Engineering, Yokohama National University) Bharathi Priya, C. (CSIR-Structural Engineering Research Center) Gopalakrishnan, N. (CSIR- Central Building Research Institute) |
1 | Ahlborn, B.K. (2006), Zoological Physics: Quantitative Models of Body Design, Actions, and Physical Limitations of Animals, Springer Science & Business Media. |
2 | Alexander, R.M. (1985), "The maximum forces exerted by animals", J. Exper. Biol., 115(1), 231-238. DOI |
3 | Alexander, R.M. (1991), "Energy-saving mechanisms in walking and running", J. Exper. Biol., 160(1), 55-69. DOI |
4 | Balcombe, J. (2009), "Animal pleasure and its moral significance", Appl. Anim. Behav. Sci., 118(3-4), 208-216. DOI |
5 | Bartholomew, G.A., Lighton, J.R. and Feener Jr, D.H. (1988), "Energetics of trail running, load carriage, and emigration in the column-raiding army ant eciton hamatum", Physiol. Zool., 61(1), 57-68. DOI |
6 | Bazant, Z.P. (2005), Scaling of Structural Strength, Butterworth-Heinemann. |
7 | Bazant, Z.P. and Cao, Z. (1987), "Size effect in punching shear failure of slabs", ACI Struct. J., 84(1), 44-53. |
8 | Bazant, Z.P. and Kazemi, M.T. (1991), "Size dependence of concrete fracture energy determined by RILEM work-of-fracture method", Int. J. Fract., 51(2), 121-138. DOI |
9 | Biewener, A.A. (1989). "Scaling body support in mammals: Limb posture and muscle mechanics", Sci., 245(4913), 45-48. DOI |
10 | Broom, D.M. (2010), "Cognitive ability and awareness in domestic animals and decisions about obligations to animals", Appl. Anim. Behav. Sci., 126(1-2), 1-11. DOI |
11 | Carpinteri, A. and Pugno, N. (2005), "Are scaling laws on strength of solids related to mechanics or to geometry?", Nat. Mater., 4(6), 421. DOI |
12 | Christman, M.C. and Leone, E.H. (2007), "Statistical aspects of the analysis of group size effects in confined animals", Appl. Anim. Behav. Sci., 103(3-4), 265-283. DOI |
13 | Federle, W., Rohrseitz, K. and Holldobler, B. (2000), "Attachment forces of ants measured with a centrifuge: Better 'wax-runners' have a poorer attachment to a smooth surface", J. Exper. Biol., 203(3), 505-512. DOI |
14 | Garhammer, J. (1991), "A comparison of maximal power outputs between elite male and female weightlifters in competition", Int. J. Sport Biomech., 7(1), 3-11. DOI |
15 | Kram, R. and Taylor, C.R. (1990), "Energetics of running: A new perspective", Nat., 346(6281), 265. DOI |
16 | Harris, H.G. and Sabnis, G.M. (1999), Structural Modeling and Experimental Techniques, CRC Press. |
17 | Heethoff, M. and Koerner, L. (2007), "Small but powerful: Theoribatid mite archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces", J. Exper. Biol., 210(17), 3036-3042. DOI |
18 | Kram, R. (1996), "Inexpensive load carrying by rhinoceros beetles", J. Exper. Biol., 199(3), 609-612. DOI |
19 | Maloiy, G.M.O., Heglund, N.C., Prager, L.M., Cavagna, G.A. and Taylor, C.R. (1986), "Energetic cost of carrying loads: Have African women discovered an economic way?", Nat., 319(6055), 668. DOI |
20 | McMahon, T.A. (1975), "Using body size to understand the structural design of animals: Quadrupedal locomotion", J. Appl. Physiol., 39(4), 619-627. DOI |
21 | Nguyen, V., Lilly, B. and Castro, C. (2014), "The exoskeletal structure and tensile loading behavior of an ant neck joint", J. Biomech., 47(2), 497-504. DOI |
22 | Noyes, F.R. and Grood, E.S. (1976), "The strength of the anterior cruciate ligament in humans and rhesus monkeys", J. Bone Joint Surg., 58(8), 1074-1082. DOI |
23 | O'Neill, M.C., Umberger, B.R., Holowka, N.B., Larson, S.G. and Reiser, P.J. (2017), "Chimpanzee super strength and human skeletal muscle evolution", Proceedings of the National Academy of Sciences, 114(28), 7343-7348. DOI |
24 | Rochmat, T.A., Wibowo, S.B., Iswahyudi, S., Wiratama, C. and Kartika, W. (2018), "The flow visualization CFD studies of the fuselage and rolled-up vortex effects of the chengdu J-10-like fighter canard", Mod. Appl. Sci., 12(2), 148. DOI |
25 | Schmidt-Nielsen, K. (1984), Scaling: Why is Animal Size So Important?, Cambridge University Press. |
26 | Sabnis, G.M. (1980), "Size effects in material systems and their impact on model studies: A theoretical approach", Proceedings of the SECTAM X Conference, Knoxville, Tennessee, U.S.A. |
27 | Sabnis, G.M. and Mirza, S.M. (1979), "Size effect in model concretes", J. Struct. Div., 105(6), 1007-1020. DOI |
28 | Saravanan, T.J., Rao, G.V.R., Prakashvel, J., Gopalakrishnan, N., Lakshmanan, N. and Murty, C.V.R. (2017), "Dynamic testing of open ground story structure and in situ evaluation of displacement demand magnifier", J. Perform. Constr. Facilit., 31(5), 04017055. DOI |
29 | Selker, F. and Carter, D.R. (1989), "Scaling of long bone fracture strength with animal mass", J. Biomech., 22(11-12), 1175-1183. DOI |
30 | Stepanov, I.A. (1995), "The scale effect is a consequence of the cellular structure of solid bodies: Thermo fluctuation nature of spread in the values of strength", Mater. Sci., 31(4), 441-447. DOI |
31 | Taylor, D. (2000), "Scaling effects in the fatigue strength of bones from different animals", J. Theoret. Biol., 206(2), 299-306. DOI |
32 | Thompson, D.D., Simmons, H.A., Pirie, C.M. and Ke, H.Z. (1995), "FDA guidelines and animal models for osteoporosis", Bone, 17(4), 125-133. |