Browse > Article
http://dx.doi.org/10.12989/bme.2015.2.1.015

Topology effects on the LCST of end-capped poly(ethylene glycol)s  

Kim, Jin Young (Department of Chemistry and Nano Science, Ewha Womans University)
Moon, Hyo Jung (Department of Chemistry and Nano Science, Ewha Womans University)
Ko, Du Young (Department of Chemistry and Nano Science, Ewha Womans University)
Jeong, Byeongmoon (Department of Chemistry and Nano Science, Ewha Womans University)
Publication Information
Biomaterials and Biomechanics in Bioengineering / v.2, no.1, 2015 , pp. 15-22 More about this Journal
Abstract
Poly(ethylene glycol) end-capped with pentafluorophenyl group(s) in ABA (FP-PEG-FP) and AB (mPEG-FP) types were prepared. Even though they were similar in composition, the lower critical solution temperature (LCST) of FP-PEG-FP was observed at $23^{\circ}C$, whereas that of mPEG-FP was observed at $65^{\circ}C$. To understand the large difference in solution behaviour of the two polymers, UV-VIS spectroscopy, microcalorimetry, 1H-NMR spectroscopy, and dynamic light scattering were used. FP-PEG-FP has two hydrophobic pentafluorophenyl groups at the ends of hydrophilic PEG (1000 Daltons), whereas mPEG-PF has a highly dynamic PEG (550 Daltons) block that are anchored to a hydrophobic pentafluorophenyl group. PF-PEG-PF not only has a smaller conformational degree of freedom than mPEG-PF but also can form extensive intermolecular aggregates, therefore, PF-PEG-PF exhibits a significantly lower LCST than mPEG-PF. This paper suggests that topological control is very important in designing a temperature-sensitive polymer.
Keywords
end-capped PEG; fluorinated compound; LCST; temperature sensitive polymer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Heskins, M. and Guillet, J.E. (1968), "Solution properties of poly(N-isopropylacrylamide)", J. Macromol. Sci. Chem., 2(8), 1441-1455.   DOI
2 Hiruta, Y., Shimamura, M., Matsuura, M., Maekawa, Y., Funatsu, T., Suzuki, Y., Ayano, E., Okano, T. and Kanazawa, H. (2014), "Temperature-responsive fluorescence polymer probes with accurate thermally controlled cellular uptakes", ACS Macro Lett., 3(3), 281-285.   DOI   ScienceOn
3 Hoffman, A.S. (2013), "Stimuli-responsive polymers: biomedical applications and challenges for clinical translation", Adv. Drug Deliv. Rev., 65(1), 10-16.   DOI   ScienceOn
4 Hou, L. and Wu, P. (2014), "LCST transition of PNIPAM-b-PVCL in water: cooperative aggregation of two distinct thermally responsive segments", Soft Matter, 10(20), 3578-3586.   DOI   ScienceOn
5 Jenkins, J., Dmitriev, R.I., Morten, K., McDermott, K.W. and Papkovsky, D.B. (2015), "Oxygen-sensing scaffolds for 3-dimensional cell and tissue culture", Acta biomater., 16, 126-135.   DOI   ScienceOn
6 Jiang, X. and Zhao, B. (2008), "Tuning micellization and dissociation transitions of thermo-and pH-sensitive poly (ethylene oxide)-b-poly (methoxydi (ethylene glycol) methacrylate-co-methacrylic acid) in aqueous solution by combining temperature and pH triggers", Macromolecules, 41(23), 9366-9375.   DOI   ScienceOn
7 Kim, J.Y., Park, M.H., Joo, M.K., Lee, S.Y. and Jeong, B. (2009), "End groups adjust molecular nano-assembly pattern and thermal gelation of polypeptide block copolymer aqueous solution", Macromolecules, 42(8), 3147-3151.   DOI   ScienceOn
8 Ko, D.Y., Shinde, U.P., Yeon, B. and Jeong, B. (2013), "Recent progress of in situ formed gels for biomedical applications", Prog. Polym. Sci., 38(3-4), 672-701.   DOI   ScienceOn
9 Li, T., Ci, T., Chen, L., Yu, L. and Ding, D. (2014), "Salt-induced reentrant hydrogel of poly(ethylene glycol)-poly(lactide-co-glycolide) block copolymers", Polym. Chem., 5(3), 979-991.   DOI
10 Lopez-Leon, T., Ortega-Vinuesa, J.L., Bastos-Gonzalez, D. and Elaissari, A. (2014), "Thermally sensitive reversible microgels formed by poly (N-isopropylacrylamide) charged chains: a hofmeister effect study", J. Colloid Interface Sci., 426, 300-307.   DOI   ScienceOn
11 Moon, H.J., Ko, D.Y., Park, M.H., Joo, M.K. and Jeong, B. (2012), "Temperature-responsive compounds as in situ gelling biomedical materials", Chem. Soc. Rev., 41(14), 4860-4883.   DOI   ScienceOn
12 Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., Nagai, S., Kikuchi, A., Maeda, N., Watanabe, H., Okano, T. and Tano, Y. (2004), "Corneal reconstruction with tissue-engineered cell sheets composed of autologous Oral mucosal epithelium", New Eng. J. Med., 351(12), 1187-1196.   DOI   ScienceOn
13 Nishinaga, T., Miyata, T., Tateno, M., Koizumi, M., Takse, M., Iyoda, M., Kobayashi, N. And Kunugi, Y. (2011), "Synthesis and structural, electronic, optical and FET properties of thiophene-pyrrole mixed hexamers end-capped with phenyl and pentafluorophenyl groups", J. Mater. Chem., 21, 14959-14966.   DOI   ScienceOn
14 Park, M.R., Chun, C., Ahn, S.W., Ki, M.H., Cho, C.S. and Song, S.C. (2010), "Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel", J. Control. Release, 147, 359-367.   DOI   ScienceOn
15 Pelah, A., Seemann, R. and Jovin, T.M. (2007), "Reversible cell deformation by a polymeric actuator", J. Am. Chem. Soc., 129(3), 468-469.   DOI   ScienceOn
16 Wang, M., Liu, H., Li, L. and Cheng, Y. (2014), "A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios", Nat. Commun., 5, 3053.
17 Singh, N.K., Nguyen, Q.V., Kim, B.S. and Lee D.S. (2015), "Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel", Nanoscale, In press.
18 Tan, D., Zhang, X., Li, J., Tan, H. and Fu, Q. (2012), "Modification of poly(ether urethane) with fluorinated phosphorylcholine polyurethane for improvement of the blood compatibility", J. Biomed. Mater. Res., Part A, 100A, 380-387.   DOI   ScienceOn
19 Vernon, B., Kim, S.W. and Bae, Y.H. (2000), "Thermoreversible copolymer gels for extracellular matrix", J. Biomed. Mater. Res., 51(1), 69-79.   DOI
20 Wijekoon, A., F-Davis, N., Leipzing, N.D. (2013), "Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing", Acta Biomater., 9, 5653-5664.   DOI   ScienceOn
21 Yin, X., Hoffman, A.S. and Stayton, P.S. (2006), "Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH", Biomacromolecules, 7(5), 1381-1385.   DOI   ScienceOn
22 Yoshimura, T., Ohno, A. and Esumi, K. (2006), "Equilibrium and dynamic surface tension properties of partially fluorinated quaternary ammonium salt gemini surfactants", Langmuir, 22, 4643-4648.   DOI   ScienceOn
23 Yu, L., Zhang, H. and Ding, J. (2006), "A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions" , Angew. Chem. Int. Ed., 45, 2232-2235.   DOI   ScienceOn
24 Chang, G., Yu, L., Yang, Z. and Ding, J. (2009), "A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water", Polymer, 50, 6111-6120.   DOI   ScienceOn
25 Barata, J.F.B., Zamaroon, A., Neves, M.G.P.M.S., Faustino, M.A.F., Tome, A.C., Cavaleiro, J.A.S., Roder, B., Juarranz, A. and Sanz-Rodriquez, F. (2015), "Photodynamic effects induced by meso-tris(pentafluorophenyl)corrole and its cyclodextrin conjugates on cytoskeletal components of HeLa cells", European. J. Med. Chem., 92, 135-144.   DOI   ScienceOn
26 Brugger, B. and Ritchering, W. (2008), "Emulsions stabilized by stimuli-sensitive poly(N-isopropylacrylamide)-co-methacrylic acid polymers: microgels versus low molecular weight polymers", Langmuir, 24(15), 7769-7777.   DOI   ScienceOn
27 Busschaert, N., Wenzel, M., Light, M.E., Iglesias-Hernandez, P., Perez-Tomas, R. and Gale, P.A. (2011), "Structure activity relationships in tripodal transmembrane anion", J. Am. Chem. Soc., 133, 14136-14148.   DOI   ScienceOn
28 Chen, L., Ci, T., Li, T., Yu, L. and Ding, J. (2014), "Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced sol-gel transition in Water", Macromolecules, 47(17), 5895-5903.   DOI   ScienceOn
29 Choi, J.Y., Kim, J.Y., Moon, H.J., Park, M.H. and Jeong, B. (2014), "$CO_2$-and $O_2$-sensitive f luorophenyl end-capped poly(ethylene glycol)", Macromol. Rapid Commun., 35(1), 66-70.   DOI   ScienceOn
30 Choi, B.G., Song, R., Nam, W. and Jeong, B. (2005), "Iron porphyrins anchored to a thermosensitive polymeric core-shell nanosphere as a thermotropic catalyst", Chem. Commun., 23, 2960-2962.
31 Creighton, T.E. (1993), Proteins-Structures and molecular properties, W.H. Freeman and Company, New York, USA.
32 Zhang, Y., Furyk, S., Sagle, L.B., Cho, Y., Bergbreiter, D.E. and Cremer, P.S. (2007), "Effects of hofmeister anions on the LCST of PNIPAM as a function of molecular weight", J. Phys. Chem. C., 111(25), 8916-8924.   DOI   ScienceOn
33 Yu, L., Chang, G., Zhang, H. and Ding, J. (2006), "Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives", J. Polym. Sci. Polym. Chem., 45, 1122-1133.
34 Yu, L. and Ding, J. (2008), "Injectable hydrogels as unique biomedical materials", Chem. Soc. Rev., 37, 1473-1481.   DOI   ScienceOn
35 Zhang, H., Yu, L. and Ding, J. (2008), "Roles of hydrophilic homopolymers on the hydrophobic-association-induced physical gelling of amphiphilic block copolymers in water", Macromolecules, 41(17), 6493-6499.   DOI   ScienceOn