Browse > Article
http://dx.doi.org/10.12989/acd.2022.7.1.069

An analytical approach for aeroelastic analysis of tail flutter  

Gharaei, Amin (Faculty of Engineering, Yazd University)
Rabieyan-Najafabadi, Hamid (Faculty of New Sciences and Technologies, University of Tehran)
Nejatbakhsh, Hossein (Faculty of Mechanical Engineering, University of Kashan)
Ghasemi, Ahmad Reza (Faculty of Mechanical Engineering, University of Kashan)
Publication Information
Advances in Computational Design / v.7, no.1, 2022 , pp. 69-79 More about this Journal
Abstract
In this research, the aeroelastic instability of a tail section manufactured from aluminum isotropic material with different shell thickness investigated. For this purpose, the two degrees of freedom flutter analytical approach are used, which is accompanied with simulation by finite element analysis. Using finite element analysis, the geometry parameters such as the center of mass, the aerodynamic center and the shear center are determined. Also, by simulation of finite element method, the bending and torsional stiffnesses for various thickness of the airfoil section are determined. Furthermore, using Lagrange's methods the equations of motion are derived and modal frequency and critical torsional/bending modes are discussed. The results show that with increasing the thickness of the isotropic airfoil section, the flutter and divergence speeds increased. Compared of the obtained results with other research, indicates a good agreement and reliability of this method.
Keywords
aeroelastic instability; aluminum airfoil section; finite element analysis; flutter speed;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Aleksandrowicz, R. and Lucjanek, W. (1958), "Sailplane stiffness measurements", OSTIV Publications, 5.
2 Cai, J., Zhang, Q., Jiang, Y., Xu, Y., Feng, J. and Deng, X. (2017), "Nonlinear stability analysis of a radially retractable hybrid grid shell in the closed position", Steel Compos. Struct., 24(3), 287-296. https://doi.org/10.12989/scs.2017.24.3.287.   DOI
3 Diana, G., Resta, F., Zasso, A., Belloli, M. and Rocchi, D. (2004), "Effects of the yaw angle on the aerodynamic behaviour of the Messina multi-box girder deck section", Wind Struct., 7(1), 41-54. http://dx.doi.org/10.12989/was.2004.7.1.041.   DOI
4 Borri, C. and Costa, C. (2004), "A parametric study of indicial function models in bridge deck aeroelasticity", Wind Struct., 7(6), 405-420. http://dx.doi.org/10.12989/was.2004.7.6.405.   DOI
5 Dillinger, J.K.S., Klimmek, T., Abdalla, M.M. and Gurdal, Z. (2013), "Stiffness optimization of composite wings with aeroelastic constraints", J. Aircraft, 50(4), 1159-1168. https://doi.org/10.2514/1.C032084.   DOI
6 Evans, S.P., Bradney, D.R. and Clausen, P.D. (2018), "Development and experimental verification of a 5kW small wind turbine aeroelastic model", J. Wind Eng. Ind. Aerod., 181, 104-111. https://doi.org/10.1016/j.jweia.2018.08.011.   DOI
7 Grinderslev, C., Lubek, M. and Zhang, Z. (2018), "Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling", Wind Struct., 27(6), 381-397. http://dx.doi.org/10.12989/was.2018.27.6.381.   DOI
8 Omenzetter, P., Wilde, K. and Fujino, Y. (2000), "Suppression of wind-induced instabilities of a long span bridge by a passive deck-flaps control system: Part I: formulation", J. Wind Eng. Ind. Aerod., 87(1), 61-79.   DOI
9 Mastroddi, F., Tozzi, M. and Capannolo, V. (2011), "On the use of geometry design variables in the MDO analysis of wing structures with aeroelastic constraints on stability and response", Aerosp. Sci. Technol., 15(3), 196-206. https://doi.org/10.1016/j.ast.2010.11.003.   DOI
10 Taheri-Behrooz, F. and Omidi, M. (2018), "Buckling of axially compressed composite cylinders with geometric imperfections", Steel Compos. Struct., 29(4), 557-567. https://doi.org/10.12989/scs.2018.29.4.557.   DOI
11 Lair, J., Hui, D., Sofiyev, A.H., Gribniak, V. and Turan, F. (2019), "On the parametric instability of multilayered conical shells using the FOSDT", Steel Compos. Struct., 31(3), 277-290. https://doi.org/10.12989/scs.2019.31.3.277.   DOI
12 Mousavi, S.B. and Yazdi, A.A. (2019), "Aeroelastic behavior of nano-composite beam-plates with double delaminations", Steel Compos. Struct., 33(5), 653-661. http://dx.doi.org/10.12989/scs.2019.33.5.653.   DOI
13 Wang, Q. (2003), "On complex flutter and buckling analysis of a beam structure subjected to static follower force", Struct Eng. Mech., 16(5), 533-556. http://dx.doi.org/10.12989/sem.2003.16.5.533.   DOI
14 Budiansky, B., Kotanchik, J.N. and Chiarito, P.T. (1947), A Torsional Stiffness Criterion for Preventing Flutter of Wings of Supersonic Missiles, National Advisory Committee for Aeronautics Langley Field Va Langley Aeronautical Laboratory.
15 Hodges, D.H. and Pierce, G.A. (2011), Introduction to Structural Dynamics and Aeroelasticity (Vol. 15). Cambridge university press.
16 Kumar, S., Onkar, A.K. and Manjuprasad, M. (2020), "Stochastic modeling and reliability analysis of wing flutter. journal of aerospace engineering", 33(5), 04020044. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001153.   DOI
17 Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.   DOI
18 Ghasemi, A.R., Jahanshir, A. and Tarighat, M.H. (2014), "Numerical and analytical study of aeroelastic characteristics of wind turbine composite blades", Wind Struct., 18(2), 103-116. http://dx.doi.org/10.12989/was.2014.18.2.103.   DOI
19 Ghasemi, A.R. and Mohandes, M. (2016), "Composite blades of wind turbine: Design, stress analysis, aeroelasticity, and fatigue", Wind Turb. Des. Control Appl., 1-26. http://dx.doi.org/10.5772/63446.   DOI
20 Li, Z., Wen, B., Dong, X., Peng, Z., Qu, Y. and Zhang, W. (2020), "Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows", J. Wind Eng. Ind. Aerod., 197, 104057. https://doi.org/10.1016/j.jweia.2019.104057.   DOI
21 Mahmoud, S.R. and Tounsi, A. (2019), "On the stability of isotropic and composite thick plates", Steel Compos. Struct., 33(4), 551-568. https://doi.org/10.12989/scs.2019.33.4.551.   DOI
22 Shafei, E. and Shirzad, A. (2017), "Ant colony optimization for dynamic stability of laminated composite plates", Steel Compos. Struct., 25(1), 105-116. https://doi.org/10.12989/scs.2017.25.1.105.   DOI
23 Marzani, A. and Viola, E. (2003), "Effect of boundary conditions on the stability of beams under conservative and non-conservative forces", Struct. Eng. Mech., 16(2), 195-217. http://dx.doi.org/10.12989/sem.2003.16.2.195.   DOI
24 Ding, Q., Chen, A. and Xiang, H. (2002), "A state space method for coupled flutter analysis of long-span bridges", Struct. Eng. Mech., 14(4), 491-504. http://dx.doi.org/10.12989/sem.2002.14.4.491.   DOI
25 Stodieck, O., Cooper, J.E., Weaver, P.M. and Kealy, P. (2017), "Aeroelastic tailoring of a representative wing box using tow-steered composites", AIAA J., 55(4), 1425-1439. https://doi.org/10.2514/1.J055364.   DOI