Browse > Article
http://dx.doi.org/10.12989/acd.2021.6.3.241

Validity assessment of a single tooth model in clenching and chewing simulations  

Lee, Yeokyeong (Department of Mechanical and Biomedical Engineering, Ewha Womans University)
Kim, Minji (Department of Orthodontics, College of Medicine, Ewha Womans University)
Park, Ji-Man (Department of Prosthodontics, Yonsei University College of Dentistry)
Kim, Hee Sun (Department of Architectural and Urban Systems Engineering, Ewha Womans University)
Publication Information
Advances in Computational Design / v.6, no.3, 2021 , pp. 241-256 More about this Journal
Abstract
Single tooth finite element model is widely used to investigate tooth behaviors with reducing modeling process and computational time. This study aims to examine the validity of a single tooth model in clenching and chewing actions. The single tooth model consisting of tooth #16, the periodontal ligament (PDL), and bone was subjected to coronal-apical movements. The predicted strains from the analyses were validated with the in-vitro experimental results on tooth-PDL-bone specimen. The stress distributions of tooth root and PDL were compared to those from the full skull model to evaluate reasonability of the single tooth model. The results of this study indicate that the single tooth model is able to predict valid structural and mechanical behaviors in clenching and chewing activities.
Keywords
single tooth; validity; clenching; chewing; finite element analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bujtar, P., Sandor, G.K., Bojtos, A., Szucs, A. and Barabas, J. (2010), "Finite element analysis of the human mandible at 3 different stages of life", Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endodontol., 110(3), 301-309. https://doi.org/10.1016/j.tripleo.2010.01.025.   DOI
2 Zheng, J., Zhou, Z.R., Zhang, J., Li, H. and Yu, H.Y. (2003), "On the friction and wear behaviour of human tooth enamel and dentin", Wear, 255(7-12), 967-974. https://doi.org/10.1016/S0043-1648(03)00079-6.   DOI
3 Choy, S.E.M., Lenz, J., Schweizerhof, K., Schmitter, M. and Schindler, H.J. (2017), "Realistic kinetic loading of the jaw system during single chewing cycles: a finite element study", J. Oral Rehabil., 44(5), 375-384. https://doi.org/10.1111/joor.12501.   DOI
4 De Santis, R., Ambrosio, L. and Nicolais, L. (2002), Mechanical Properties of Tooth Structures, In: Integrated Biomaterials Science, Springer, Boston, MA, USA.
5 Choy, K., Pae, E.K., Park, Y., Kim, K.H. and Burstone, C.J. (2000), "Effect of root and bone morphology on the stress distribution in the periodontal ligament", Am. J. Orthod. Dentofac. Orthop., 117(1), 98-105. https://doi.org/10.1016/S0889-5406(00)70254-X.   DOI
6 Lee, Y.K., Kim, H.S. and Park, J.Y. (2017), "The case study of masticatory force with food from full skull and partial model", Int. J. Precis. Eng. Manuf., 18(10), 1455-1462. https://doi.org/10.1007/s12541-017-0173-6.   DOI
7 Bola, A.M., Ramos, A. and Simoes, J.A. (2016), "Sensitivity analysis for finite element modeling of humeral bone and cartilage", Biomat. Biomech. Bioeng., 3(2), 71-84. http://dx.doi.org/10.12989/bme.2016.3.2.071.   DOI
8 Chaichanasiri, E., Nanakorn, P., Tharanon, W. and Vander Sloten, J. (2009), "A finite element study of the effect of contact forces between an implant-retained crown and its adjacent teeth on bone stresses", J. Mech., 25(4), 441-450. https://doi.org/10.1017/S1727719100002926.   DOI
9 Commisso, M.S., Martinez-Reina, J., Ojeda, J. and Mayo, J. (2015), "Finite element analysis of the human mastication cycle", J. Mech. Behav. Biomed. Mater., 41, 23-35. https://doi.org/10.1016/j.jmbbm.2014.09.022.   DOI
10 Helkimo, E., Carlsson, G.E. and Helkimo, M. (1977), "Bite force and state of dentition", Acta. Odontol. Scand., 35(6), 297-303. https://doi.org/10.3109/00016357709064128.   DOI
11 Kinney, J.H., Habelitz, S., Marshall, S.J. and Marshall, G.W. (2003), "The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin", J. Dent. Res., 82(12), 957-961. https://doi.org/10.1177/154405910308201204.   DOI
12 Nakhli, Z., Hatira, F.B., Pithioux, M., Chabrand, P. and Saanouni, K. (2019), "Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law", Struct. Eng. Mech., 72(1), 000-000. https://doi.org/10.12989/sem.2019.72.1.000.
13 Lee, Y.K. and Chun, Y.S. (2020), "An investigation into structural behaviors of skulls chewing food in different occlusal relationships using FEM", Clin. Exp. Dent. Res., 6(3), 277-285. https://doi.org/10.1002/cre2.273.   DOI
14 Mahoney, E., Holt, A., Swain, M. and Kilpatrick, N. (2000), "The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study", J. Dent., 28(8), 589-594. https://doi.org/10.1016/S0300-5712(00)00043-9.   DOI
15 Martinez Choy, S.E., Lenz, J., Schweizerhof, K., Schmitter, M. and Schindler, H.J. (2017), "Realistic kinetic loading of the jaw system during single chewing cycles: a finite element study", J. Oral Rehabil., 44(5), 375-384. https://doi.org/10.1111/joor.12501.   DOI
16 Middleton, J., Jones, M. and Wilson, A. (1996), "The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model", Am. J. Orthod. Dentofac. Orthop., 109(2), 155-162. https://doi.org/10.1016/S0889-5406(96)70176-2.   DOI
17 Mobasseri, S., Sadeghi, M., Janghorban, M. and Tounsi, A. (2020), "Approximated 3D non-homogeneous model for the buckling and vibration analysis of femur bone with femoral defects", Biomat. Biomech. Bioeng., 5(1), 25-35. https://doi.org/10.12989/bme.2020.5.1.025.   DOI
18 Ona, M. and Wakabayashi, N. (2006), "Influence of alveolar support on stress in periodontal structures", J. Dental Res., 85(12), 1087-1091. https://doi.org/10.1177/154405910608501204.   DOI
19 Sonnesen, L. and Bakke, M. (2005), "Molar bite force in relation to occlusion, craniofacial dimensions, and head posture in pre-orthodontic children", Eur. J. Orthod., 27(1), 58-63. https://doi.org/10.1093/ejo/cjh069.   DOI
20 Panagiotopoulou, O., Kupczik, K. and Cobb, S.N. (2011), "The mechanical function of the periodontal ligament in the macaque mandible: a validation and sensitivity study using finite element analysis", J. Anat., 218(1), 75-86. https://doi.org/10.1111/j.1469-7580.2010.01257.x.   DOI
21 Dechaumphai, P., Phongthanapanich, S. and Bhandhubanyong, P. (2003), "Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks", Struct. Eng. Mech., 15(5), 563-578. http://dx.doi.org/10.12989/sem.2003.15.5.563.   DOI
22 Nevah, G.S.R., Chattah, N.L.T., Zaslansky, P., Shahar, R. and Weiner, S. (2012), "Tooth-PDL-bone complex: Response to compressive loads encountered during mastication - A reviews", Arch. Oral Biol., 57(12), 1575-1584. https://doi.org/10.1016/j.archoralbio.2012.07.006.   DOI
23 Natali, A.N., Pavan, P.G. and Scarpa, C. (2004), "Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament", Dent. Mater., 20(7), 623-629. https://doi.org/10.1016/j.dental.2003.08.003.   DOI
24 Field, C., Ichim, I., Swain, M.V., Chan, E., Darendeliler, M.A., Li, W. and Li, Q. (2009), "Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model", Am. J. Orthod. Dentofac. Orthop., 135(2), 174-181. https://doi.org/10.1016/j.ajodo.2007.03.032.   DOI
25 Ryou, H., Niu, L.N., Dai, L., Pucci, C.R., Arola, D.D., Pashley, D.H. and Tay, F.R. (2011), "Effect of biomimetic remineralization on the dynamic nanomechanical properties of dentin hybrid layers", J. Dent. Res., 90(9), 1122-1128. https://doi.org/10.1177/0022034511414059.   DOI
26 Shewchuk, J.R. (2002), "Delaunay refinement algorithms for triangular mesh generation", Comput. Geom., 22(1-3), 21-74. https://doi.org/10.1016/S0925-7721(01)00047-5.   DOI
27 Motoyoshi, M., Hirabayashi, M., Shimazaki, T. and Namura, S. (2002), "An experimental study on mandibular expansion: increases in arch width and perimeter", Eur. J. Orthod., 24(2), 125-130. https://doi.org/10.1093/ejo/24.2.125.   DOI
28 Sultana, M.H., Yamada, K. and Hanada, K. (2002), "Changes in occlusal force and occlusal contact area after active orthodontic treatment: a pilot study using pressure-sensitive sheets", J. Oral Rehabil., 29(5), 484-491. https://doi.org/10.1046/j.1365-2842.2002.00849.x.   DOI
29 Wierszycki, M., Kakol, W. and Lodygowski, T. (2006), "The screw loosening and fatigue analyses of three dimensional dental implant model", 2006 ABAQUS Users' Conference (Vol. 15), Providence, RI, U.S.A, May.
30 Zhao, B., Hu, J., Chen, W., Chen, J. and Jing, Z. (2020), "A nonlinear uniaxial stress-strain constitutive model for viscoelastic membrane materials", Polym. Test., 90, 106633. https://doi.org/10.1016/j.polymertesting.2020.106633.   DOI
31 El Sallah, Z.M., Ali, B. and Abderahmen, S. (2020), "Effect of force during strumbling of the femur fracture with a different ce-mented total hip prosthesis", Biomat. Biomech. Bioeng., 5(1), 11-23. https://doi.org/10.12989/bme.2020.5.1.011.   DOI
32 Omori, K., Arikawa, H. and Inoue, K. (2001), "An evaluation of elastomeric impression materials based on surface compressive strength", J. Oral Rehabil., 28(4), 320-327. https://doi.org/10.1046/j.1365-2842.2001.00660.x.   DOI
33 Hohmann, A., Kober, C., Young, P., Dorow, C., Geiger, M., Boryor, A., Sander, F.M., Sander, C. and Sander, F.G. (2011), "Influence of different modeling strategies for the periodontal ligament on finite element simulation results", Am. J. Orthod. Dentofac. Orthop., 139(60), 775-783. https://doi.org/10.1016/j.ajodo.2009.11.014.   DOI
34 Kim, H.S., Park, J.Y., Kim, N.E., Shin, Y.S., Park, J.M. and Chun, Y.S. (2012), "Finite element modeling technique for predicting mechanical behaviors on mandible bone during mastication", J. Adv. Prosthod., 4(4), 218-226. http://dx.doi.org/10.4047/jap.2012.4.4.218.   DOI
35 Merdji, A., Mootanah, R., Bouiadjra, B.A.B., Benaissa, A., Aminallah, L. and Mukdadi, S. (2013), "Stress analysis in single molar tooth", Mater. Sci. Eng. Civil, 33(2), 691-698. https://doi.org/10.1016/j.msec.2012.10.020.   DOI
36 Mohamed, C., Abderahmane, S. and Benbarek, S. (2018), "Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement", Struct. Eng. Mech., 66(1), 37-43. https://doi.org/10.12989/sem.2018.66.1.037.   DOI
37 Natali, A.N. (2003), Dental Biomechanics, Taylor & Francis, CRC Press, London, U.K.
38 Vikram, N.R., Kumar, K.S., Nagachandran, K.S. and Hashir, Y.M. (2012), "Apical stress distribution on maxillary central incisor during various orthodontic tooth movements by varying cemental and two different periodontal ligament thicknesses: a FEM study", Indian J. Dent. Res., 23(2), 213-220. https://doi.org/10.4103/0970-9290.100429.   DOI
39 Poiate, I.A.V.P., de Vasconcellos, A.B., de Santana, R.B. and Poiate, Jr E. (2009), "Three-dimensional stress distribution in the human periodontal ligament in masticatory, parafunctional, and trauma loads: finite element analysis", J. Periodontol., 80(11), 1859-1867. https://doi.org/10.1902/jop.2009.090220.   DOI
40 Kojima, Y. and Fukui, H. (2006), "A numerical simulation of tooth movement by wire bending", Am. J. Orthod. Dentofac. Orthop., 130(4), 452-459. https://doi.org/10.1016/j.ajodo.2005.01.028.   DOI
41 Viecilli, R.F., Katona, T.R., Chen, J., Hartsfield, Jr J.K. and Roberts, W.E. (2008), "Three-dimensional mechanical environment of orthodontic tooth movement and root resorption", Am. J. Orthod. Dentofac. Orthop., 133(6), 791-e11. https://doi.org/10.1016/j.ajodo.2007.11.023.   DOI
42 Du, J.K., Lin, W.K., Wang, C.H., Lee, H.E., Li, H.Y. and Wu, J.H. (2011), "FEM analysis of the mandibular first premolar with different post diameters", Odontol., 99(2), 148-154. https://doi.org/10.1007/s10266-011-0011-8.   DOI
43 ABAQUS Documentation (2013), Abaqus Analysis User's Manual, Dassault Systemes, Troy, MI, U.S.A.
44 Boryor, A., Geiger, M., Hohmann, A., Wunderlich, A., Sander, C., Sander, F.M. and Sander, F.G. (2008), "Stress distribution and displacement analysis during an intermaxillary disjunction - a three-dimensional FEM study of a human skull", J. Biomech., 41(2), 376-382. https://doi.org/10.1016/j.jbiomech.2007.08.016.   DOI
45 Benazzi, S., Kullmer, O., Grosse, I.R. and Weber, G.W. (2011), "Using occlusal wear information and finite element analysis to investigate stress distributions in human molars", J. Anat., 219(3), 259-272. https://doi.org/10.1111/j.1469-7580.2011.01396.x.   DOI