Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.6.330

Structural and Electrical Properties of CoxMn3-xO4 Ceramics for Negative Temperature Coefficient Thermistors  

Kim, Kyeong-Min (Department Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Lee, Sung-Gap (Department Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Kwon, Min-Su (Department Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.6, 2017 , pp. 330-333 More about this Journal
Abstract
$Co_xMn_{3-x}O_4$ ($1.48{\leq}x{\leq}1.63$) ceramics were fabricated using the solid-state reaction method. Structural and electrical properties of specimens based on the composition ratio of Co were observed in order to investigate their applicability in NTC thermistors. All specimens showed a single spinel phase with a homogeneous tetragonal structure. The $Co_{1.57}Mn_{1.43}O_4$ specimen showed a maximum average grain size of approximately $6.47{\mu}m$. In all specimens, TCR properties displayed excellent characteristics of over $-4.2%/^{\circ}C$. The resistivity at 298 K and B-value of the $Co_{1.57}Mn_{1.43}O_4$ specimen were approximately $418{\Omega}-cm$ and 4300, respectively.
Keywords
Infrared detector; $Ni_{0.79}Co_{0.15-x}Cu_xMn_{2.06}O_4$; Responsivity; Solid-state reaction method; Thick film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. E. Sickafus, J. M. Wills, and N. W. Grimes, J. Am. Ceram. Soc., 82, 3279 (1999). [DOI: https://doi.org/10.1111/j.1151-2916.1999.tb02241.x]
2 X. X. Tang, A. Manthiram, and J. B. Goodenough, J. Less-Common Met., 156, 357 (1989). [DOI: https://doi.org/10.1016/0022-5088(89)90431-1]   DOI
3 K. Park and J. K. Lee, Scripta Mater., 57, 329 (2007). [DOI: https://doi.org/10.1016/j.scriptamat.2007.04.026]   DOI
4 D. L. Fang, Z. B. Wang, P. H. Yang, W. Liu, C. S. Chen, and A.J.A. Winnubst, J. Am. Ceram. Soc., 89, 230 (2006). [DOI: https://doi.org/10.1111/j.1551-2916.2005.00666.x]   DOI
5 B. Boucher, R. Buhl, R. D. Bella, and M. Perrin, J. Phys. France, 31, 113 (1970). [DOI: https://doi.org/10.1051/jphys:01970003101011300]   DOI
6 D. G. Wickham and W. J. Croft, J. Phys. Chem. Solids, 7, 351 (1958). [DOI: https://doi.org/10.1016/0022-3697(58)90285-3]   DOI
7 B. Gillot, R. Legros, R. Metz, and A. Rousset, Solid State Ionics, 51, 7 (1992). [DOI: https://doi.org/10.1016/0167-2738(92)90337-O]   DOI
8 H. Bordeneuve, A. Rousset, C. Tenailleau, and S. Guillemet-Fritsch, J. Therm. Anal. Calorim., 101, 137 (2010) [DOI: https://link.springer.com/article/10.1007/s10973-009-0557-7]   DOI
9 H. Bordeneuve, C. Tenailleau, S. Guillemet-Fritsch, R. Smith, E. Suard, and A. Rousset, Solid State Sci., 12, 379 (2010). [DOI: https://doi.org/10.1016/j.solidstatesciences.2009.11.018]   DOI
10 A. Rousset, C. Tenailleau, P. Dufour, H. Bordenenve, I. Pasquet. S. GuillemetFritsch, V. Poulain, and S. Schuurman, Int. J. Appl. Ceram. Technol., 10, 175 (2013). [DOI: https://doi.org/10.1111/j.1744-7402.2011.02723.x]   DOI
11 G. P. Vasil'ev, L. A. Pakhomov, and L. A. Ryabova, Thin Solid Films, 66, 119 (1980). [DOI: https://doi.org/10.1016/0040-6090(80)90213-8]   DOI
12 S. E. Dorris and T. O. Mason, J. Am. Ceram. Soc., 71, 379 (1988). [DOI: https://doi.org/10.1111/j.1151-2916.1988.tb05057.x]   DOI
13 R. D. Shannon, Acta Cryst., A32, 751 (1976). [DOI: https://doi.org/10.1107/S0567739476001551]