Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.4.217

Influence of Electron Beam Irradiation on the Structural, Optical, and Electrical Properties of ZTO/Ag/ZTO Trilayer Films  

Eom, Tae-Young (School of Materials Science and Engineering, University of Ulsan)
Song, Young-Hwan (School of Materials Science and Engineering, University of Ulsan)
Gong, Tae-Kyung (School of Materials Science and Engineering, University of Ulsan)
Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
Cheon, Joo-Yong (Advanced Manufacturing Process R&D Group, Korea Institute of Industrial Technology)
Cha, Byung-Chul (Advanced Manufacturing Process R&D Group, Korea Institute of Industrial Technology)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.4, 2017 , pp. 217-220 More about this Journal
Abstract
We deposited transparent conductive ZTO/Ag/ZTO trilayer thin films on glass substrates through magnetron sputtering, and then conducted intense electron beam irradiation on their surfaces to investigate the effects of electron irradiation on the structural, optical, and electrical properties of these films. After deposition, we electron irradiated the ZTO/Ag/ZTO films for 10 min at electron energies of 300, 500, and 700 eV. The films that were electron irradiated at 700 eV showed a higher optical transmittance (84.2%) in the visible wavelength region and a lower resistivity ($7.2{\times}10^{-5}{\Omega}cm$) compared with the other films. The figure of merit revealed that the ZTO/Ag/ZTO films that were electron irradiated at 700 eV had a higher optical and electrical performance than the other films prepared in this study.
Keywords
ZTO; Ag; Thin film; Magnetron sputtering; Figure of merit;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Y. Chen, J. C. Hsu, P. W. Wang, Y. W. Pai, C. Y. Wu, and Y. H. Lin, Appl. Surf. Sci., 257, 3446 (2011). [DOI: https://doi.org/10.1016/j.apsusc.2010.11.043]   DOI
2 D. Kim, Ceram. Int., 40, 1457 (2014). [DOI: https://doi.org/10.1016/j.ceramint.2013.07.029]   DOI
3 C. S. Huang and C. C. Liu, Microelectron. Eng., 148, 59 (2015). [DOI: https://doi.org/10.1016/j.mee.2015.08.002]   DOI
4 L. Liu, S. Ma, H. Wu, B. Zhu, H. Yang, J. Tang, and X. Zhao, Mater. Lett., 149, 43 (2015). [DOI: https://doi.org/10.1016/j.matlet.2015.02.093]   DOI
5 E. J. Yun, J. W. Jung, K. N. Ko, J. Hwang, B. C. Lee, and M. H. Jung, Thin Solid Films, 518, 6236 (2010). [DOI: https://doi.org/10.1016/j.tsf.2010.03.164]   DOI
6 S. B. Heo, J. H. Jeon, T. K. Gong, H. J. Moon, S. K. Kim, B. C. Cha, J. H. Kim, U. C. Jung, S. Park, and D. Kim, Ceram. Int., 41, 9668 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2015.04.034]   DOI
7 Y. S. Kim, S. B. Heo, H. M. Lee, Y. J. Lee, I. S. Kim, M. S. Kang, D. H. Choi, B. H. Lee, M. G. Kim, and D. Kim, Appl. Surf. Sci., 258, 3903 (2012). [DOI: https://doi.org/10.1016/j.apsusc.2011.12.057]   DOI
8 Y. M. Kong, M. K. Kim, and D. Kim, Korean J. Met. Mater., 52, 233 (2014). [DOI: https://doi.org/10.3365/KJMM.2014.52.3.233]   DOI
9 Y. Hayashi, K. Kondo, K. Murai, T. Moriga, I. Nakabayashi, H. Fukumoto, and K. Tominaga, Vacuum, 74, 607 (2004). [DOI: https://doi.org/10.1016/j.vacuum.2004.01.033]   DOI
10 H. N. Cui, V. Teixeira, L. J. Meng, R. Martins, and E. Fortunato, Vacuum, 82, 1507 (2008). [DOI: https://doi.org/10.1016/j.vacuum.2008.03.061]   DOI
11 J. H. Jeon, T. K Gong, Y. M. Kong, H. M. Lee, and D. Kim, Electron. Mater. Lett., 11, 481 (2015). [DOI: https://doi.org/10.1007/s13391-014-4410-1]   DOI
12 S. B. Heo, H. J. Moon, J. H. Oh, Y. H. Song, T. Y. Eom, J. H. Kim, and D. Kim, Korean J. Met. Mater., 54, 775 (2016). [DOI: https://doi.org/10.3365/KJMM.2016.54.10.775]   DOI