Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.1.55

Effect of Annealing Temperature on the Electrical Performance of SiZnSnO Thin Film Transistors Fabricated by Radio Frequency Magnetron Sputtering  

Kim, Byoungkeun (Department of Semiconductor Engineering, Cheongju University)
Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.1, 2017 , pp. 55-57 More about this Journal
Abstract
Amorphous oxide thin film transistors (TFTs) were fabricated with 0.5 wt% silicon doped zinc tin oxide (a-0.5SZTO) thin film deposited by radio frequency (RF) magnetron sputtering. In order to investigate the effect of annealing treatment on the electrical properties of TFTs, a-0.5SZTO thin films were annealed at three different temperatures ($300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$ for 2 hours in a air atmosphere. The structural and electrical properties of a-0.5SZTO TFTs were measured using X-ray diffraction and a semiconductor analyzer. As annealing temperature increased from $300^{\circ}C$ to $500^{\circ}C$, no peak was observed. This provided crystalline properties indicating that the amorphous phase was observed up to $500^{\circ}C$. The electrical properties of a-0.5SZTO TFTs, such as the field effect mobility (${\mu}_{FE}$) of $24.31cm^2/Vs$, on current ($I_{ON}$) of $2.38{\times}10^{-4}A$, and subthreshold swing (S.S) of 0.59 V/decade improved with the thermal annealing treatment. This improvement was mainly due to the increased carrier concentration and decreased structural defects by rearranged atoms. However, when a-0.5SZTO TFTs were annealed at $700^{\circ}C$, a crystalline peak was observed. As a result, electrical properties degraded. ${\mu}_{FE}$ was $0.06cm^2/Vs$, $I_{ON}$ was $5.27{\times}10^{-7}A$, and S.S was 2.09 V/decade. This degradation of electrical properties was mainly due to increased interfacial and bulk trap densities of forming grain boundaries caused by the annealing treatment.
Keywords
Thin film transistor; Annealing temperature; Oxide semiconductor; SiZnSnO; X-ray diffraction spectroscopy;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 T. Kamiya, K. Nomura, and H. Hosono, Journal of display Technology, 5, 462 (2009). [DOI: https://doi.org/10.1109/JDT.2009.2022064]   DOI
2 E. Chong, Y. S. Chun, S. H. Kim, and S. Y. Lee, Journal of Electrical Engineering & Technology, 6, 539 (2011). [DOI: https://doi.org/10.5370/JEET.2011.6.4.539]   DOI
3 H. Q. Chiang, B. R. McFarlane, D. Hong, R. E. Presley, and J. F. Wager, Journal of Non-Crystalline Solids, 354, 2826 (2008). [DOI: https://doi.org/10.1016/j.jnoncrysol.2007.10.105]   DOI
4 A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, and J. F. Muth, Thin Solid Films, 516, 1326 (2008). [DOI: https://doi.org/10.1016/j.tsf.2007.03.153]   DOI
5 K. M. Ko and S. Y. Lee, Trans. Electr. Electron. Mater., 15, 328 (2014). [DOI: https://doi.org/10.4313/TEEM.2014.15.6.328]   DOI
6 J. Y. Kwon, J. S. Jung, K. S. Son, K. H Lee, J. S. Park, T. S. Kim, J. S. Park, R. Choi, J. K. Jeong, B. W. Koo, and S. Y. Lee, J. Electrochem. Soc., 158, H433 (2011). [DOI: https://doi.org/10.1149/1.3552700]   DOI
7 J. S. Park, T. S. Kim, K. S. Son, K. H. Lee, W. J. Maeng, H. S. Kim, E. S. Kim, K. B. Park, J. B. Seon, W. Choi, M. K. Ryu, and S. Y. Lee, Appl. Phys. Lett., 96, 262109 (2010). [DOI: https://doi.org/10.1063/1.3435482]   DOI
8 J. Y. Choi, S. S. Kim, and S. Y. Lee, Electron. Mater. Lett., 9, 489 (2013). [DOI: https://doi.org/10.1007/s13391-013-0045-x]   DOI
9 I. J. Kang, C. H. Park, E. Chong, and S. Y. Lee, Current Appl. Phys., 12, S12 (2012). [DOI: https://doi.org/10.1016/j.cap.2012.05.044]   DOI
10 T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett., 90, 242114 (2007). [DOI: https://doi.org/10.1063/1.2749177]   DOI
11 P. Barquinha, A. Vilà, G. Goncalves, L. Pereira, R. Martins, J. Morante, and E. Fortunato, IEEE Trans. Electron Dev., 55, 954 (2008). [DOI: https://doi.org/10.1109/TED.2008.916717]   DOI
12 S. M. Han and S. Y. Lee, Trans. Electr. Electron. Mater., 16, 62 (2015). [DOI: https://doi.org/10.4313/TEEM.2015.16.2.62]   DOI
13 K. M. Ko and S. Y. Lee, Trans. Electr. Electron. Mater., 16, 99 (2015). [DOI: https://doi.org/10.4313/TEEM.2015.16.2.99]   DOI
14 P. B. Shea and J. Kanicki, J. Appl. Phys., 98, 014503 (2005). [DOI: https://doi.org/10.1063/1.1949713]   DOI
15 J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 91, 113505 (2007). [DOI: https://doi.org/10.1063/1.2783961]   DOI
16 C. S. Fuh, P. T. Liu, W. H. Huang, and S. M. Sze, IEEE Electron Device Lett., 35, 1103 (2014). [DOI: https://doi.org/10.1109/LED.2014.2354598]   DOI
17 C. S. Fuh, S. M. Sze, P. T. Liu, L. F. Teng, and Y. T. Chou, Thin Solid Films, 520, 1489 (2011). [DOI: https://doi.org/10.1016/j.tsf.2011.08.088]   DOI
18 J. H. Ko, I. H. Kim, D. Kim, K. S. Lee, T. S. Lee, J. H. Jeong, B. Cheong, Y. J. Baik, and W. M. Kim, Thin Solid Films, 494, 42 (2006). [DOI: https://doi.org/10.1016/j.tsf.2005.07.195]   DOI
19 T. Kamiya, K. Nomura, and H. Hosono, Journal of display Technology, 5, 468 (2009). [DOI: https://doi.org/10.1109/JDT.2009.2034559]   DOI