Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.3.159

Electrochemical Properties of a Si3N4 Dielectric Layer Deposited on Anodic Aluminum Oxide for Chemical Sensors  

Jo, Ye-Won (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Lee, Sung-Gap (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Yeo, Jin-Ho (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Lee, Dong-Jin (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.3, 2016 , pp. 159-162 More about this Journal
Abstract
We studied an electrolyte-dielectric metal (EDM) device based on a Si3N4 layer-coated anodic aluminium oxide (AAO) template for chemical sensors. The AAO templates were fabricated using a two-step anodization procedure at 0℃ and 70 V in 0.3 M oxalic acid, after which the Si3N4 was deposited on them using plasma enhanced chemical vapor deposition (PECVD). The average pore size was approximately 106 nm and the depth of the AAO templates was 24.6 nm to 86.5 nm. The Si3N4 layer-coated AAO is more stable than a single AAO template.
Keywords
AAO; EDM; Chemical sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Masuda and M. Satoh, Jpn. J. Appl. Phys., 35, 126 (1996). [DOI: http://dx.doi.org/10.1143/JJAP.35.L126]   DOI
2 G. J. Wang and C. S. Peng, ENS'05 Paris (France, 2005).
3 T. Shimizu, F. Inoue, C. Wang, S. Otsuka, Y. Tada, M. Koto, and S. Shingubara, Jpn. J. Appl. Phys., 65, 06GF06 (2013).
4 C. Sunseri, C. Spadaro, S. Piazza, M. Volpe, and F. Di Quarto, J. Solid State Electrochem., 10, 416 (2006). [DOI: http://dx.doi.org/10.1007/s10008-005-0012-z]   DOI
5 G. Hu, H. Zhang, W. Di, and T. Zhao, Appl. Phys. Res., 1, 78 (2009). http://dx.doi.org/10.5539/apr.v1n2p78   DOI
6 M. J. Schoning, F. Ronkel, M. Crott, M. Thust, J. W. Schultz, P. Korodos, and H. Luth, Electrochim. Acta, 42, 3185 (1997). [DOI: http://dx.doi.org/10.1016/S0013-4686(97)00172-2]   DOI
7 M. J. Schoning, U. Malkoc, M. Thust, A. Steffen, P. Kordos, and H. Luth, Sensor Actuat. B, 65, 288 (2000). [DOI: http://dx.doi.org/10.1016/S0925-4005(99)00349-4]   DOI
8 K. B. Oldham, J. Electroanal Chem., 613, 131 (2008). [DOI: http://dx.doi.org/10.1016/j.jelechem.2007.10.017]   DOI
9 P. Bergveld, IEEE Trans. Biomed. Eng., BME-17, 70 (1970). [DOI: http://dx.doi.org/10.1109/TBME.1970.4502688]   DOI
10 M. J. Schoning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordos, and H. Luth, Sensor Actuat. B, 35, 228 (1996). [DOI: http://dx.doi.org/10.1016/S0925-4005(97)80060-3]   DOI
11 M. J. Schöning, Sensors and Actuators B, 65, 288 (2000). [DOI: http://dx.doi.org/10.1016/S0925-4005(99)00349-4]   DOI
12 C. D. Fung, IEEE Trans. Electron Dev., 33, 8 (1986). [DOI: http://dx.doi.org/10.1109/T-ED.1986.22429]   DOI
13 P. V. Bobrov, Sensors and Actuators B, 3, 75 (1991). [DOI: http://dx.doi.org/10.1016/0925-4005(91)85010-G]   DOI
14 C. S. Lai, Solid State Lett., 9, 90 (2006).   DOI
15 S. Yoshida, J. Electrochem. Soc., 151, 53 (2004). [DOI: http://dx.doi.org/10.1149/1.1643074]   DOI
16 T. M. Pan, Sensors and Actuators B, 138, 619 (2009). [DOI: http://dx.doi.org/10.1016/j.snb.2009.01.051]   DOI
17 K. B. Oldham, J. Electroanal. Chem., 613, 131 (2008). [DOI: http://dx.doi.org/10.1016/j.jelechem.2007.10.017]   DOI
18 B. L. Kuzin and D. I. Bronin, Ionics, 7, 141 (2001). [DOI: http://dx.doi.org/10.1007/BF02375482]   DOI
19 B. Piela and P. K. Wrona, J. Electroanal. Chem., 388, 69 (1995). [DOI: http://dx.doi.org/10.1016/0022-0728(94)03848-W]   DOI
20 J. K. Park. Y. J. Baik, Materials Latters, 63, 1674 (2009). [DOI: http://dx.doi.org/10.1016/j.matlet.2009.05.006]   DOI