Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.3.129

Analysis of Pull-in-Voltage and Figure-of-Merit of Capacitive MEMS Switch  

Saha, Rajesh (Electronics and Communication Engineering, National Institute of Technology)
Maity, Santanu (Electronics and Communication Engineering, National Institute of Technology)
Devi, Ngasepam Monica (Electronics and Communication Engineering, National Institute of Technology)
Bhunia, Chandan Tilak (Electronics and Communication Engineering, National Institute of Technology)
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.3, 2016 , pp. 129-133 More about this Journal
Abstract
Theoretical and graphical analysis of pull-in-voltage and figure of merit for a fixed-fixed capacitive Micro Electromechanical Systems (MEMS) switch is presented in this paper. MEMS switch consists of a thin electrode called bridge suspended over a central line and both ends of the bridge are fixed at the ground planes of a coplanar waveguide (CPW) structure. A thin layer of dielectric material is deposited between the bridge and centre conductor to avoid stiction and provide low impedance path between the electrodes. When an actuation voltage is applied between the electrodes, the metal bridge acquires pull in effect as it crosses one third of distance between them. In this study, we describe behavior of pull-in voltage and figure of merit (or capacitance ratio) of capacitive MEMS switch for five different dielectric materials. The effects of dielectric thicknesses are also considered to calculate the values of pull-in-voltage and capacitance ratio. This work shows that a reduced pull-in-voltage with increase in capacitance ratio can be achieved by using dielectric material of high dielectric constant above the central line of CPW.
Keywords
Figure of merit; MEMS; Pull-in-voltage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Lin, M. Wang, and M. Rais-Zadeh, Wireless Research Collaboration Symposium (NWRCS), 2014 National, p. 11-14.
2 K. Topalli, M. Unlu, H. I. Atasoy, O. A. Civi, S. Demir, and T. Akin, Prog. in Electromagnetic Research, PIER 97, 343 (2009). [DOI: http://dx.doi.org/10.2528/PIER09092502]   DOI
3 A. Kundu, S. Das, S. Maity, B. Gupta, S. K. Lahiri, and H. Saha, Journal of Micromechanics and Microengineering, 22, 045004 (2013). [DOI: http://dx.doi.org/10.1088/0960-1317/22/4/045004]   DOI
4 R. Saha, S. Maity, and C. T. Bhunia, Alexandria Engineering Journal, 55 (2016). [DOI: http://dx.doi.org/10.1016/j.aej.2016.05.002]   DOI
5 Ng. M. Devi, S. Maity, R. Saha, and S. K. Metya, Cogent Engineering, 2, 1083641 (2015). [DOI: http://dx.doi.org/10.1080/23311916.2015.1083641]   DOI
6 S. Das, A. Kundu, S. Maity, S. Dhar, and B. Gupta, 11th Mediterranean Microwave Symposium (MMS), 286-289 (2011). [DOI: http://dx.doi.org/10.1109/MMS.2011.6068582]   DOI
7 C. W. Jung, M. J. Lee, G. P. Li, and F. D. Flaviis, IEEE Transaction on Antennas and Propagation, 54, 455 (2006). [DOI: http://dx.doi.org/10.1109/TAP.2005.863407]   DOI
8 M. Maheswaran, M. Nambirajan, U.C.C. Yadav, and H. N. Upadhyay, Journal of Applied Sciences, 12, 1730 (2012). [DOI: http://dx.doi.org/10.3923/jas.2012.1730.1733]   DOI
9 S. Flores, E. R. Ruelas, M. Flores, and J. C. Chiao, Proc. of the MRS Materials Society Fall Meeting (Boston, 2003) p. A5.86.1-A5.863.
10 P. Verma and S. Singh, IOSR Journal of Electronics and Communication Engineering, 4, 60 (2013). [DOI: http://dx.doi.org/10.9790/2834-0456068]   DOI
11 G. N. Nielson and G. Barbastathis, J. Microelectromech Syst., 15, 811 (2006). [DOI: http://dx.doi.org/10.1109/JMEMS.2006.879121]   DOI
12 D. C. Ferguson, Mater. Design, 22, 555 (2001). [DOI: http://dx.doi.org/10.1016/S0261-3069(01)00016-4]   DOI
13 S. Senturia, Microsystem Design (Kluwer Academic Publishers, 2001).
14 J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, Sensors and Actuators, A, 93, 273 (2001). [DOI: http://dx.doi.org/10.1016/S0924-4247(01)00662-8]   DOI
15 G. M. Rebeiz, RF MEMS Theory, Design, and Technology (New York, J. Wiley & Sons, 2003)