Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.3.156

3-D Simulation of Nanoscale SOI n-FinFET at a Gate Length of 8 nm Using ATLAS SILVACO  

Boukortt, Nour El Islam (Department of Electrical Engineering, University of Mostaganem)
Hadri, Baghdad (Department of Electrical Engineering, University of Mostaganem)
Caddemi, Alina (DICIEAMA Department, University of Messina)
Crupi, Giovanni (DICIEAMA Department, University of Messina)
Patane, Salvatore (Dipartimento di Fisica e Scienze della Terra, University of Messina)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.3, 2015 , pp. 156-161 More about this Journal
Abstract
In this paper, we present simulation results obtained using SILVACO TCAD tools for a 3-D silicon on insulator (SOI) n-FinFET structure with a gate length of 8 nm at 300K. The effects of variations of the device’s key electrical parameters, such as threshold voltage, subthreshold slope, transconductance, drain induced barrier lowering, oncurrent, leakage current and on/off current ratio are presented and analyzed. We will also describe some simulation results related to the influence of the gate work function variations on the considered structure. These variations have a direct impact on the electrical device characteristics. The results show that the threshold voltage decreases when we reduce the gate metal work function Φm. As a consequence, the behavior of the leakage current improves with increased Φm. Therefore, the short channel effects in real 3-D FinFET structures can reasonably be controlled and improved by proper adjustment of the gate metal work function.
Keywords
Device scaling; FinFETs; Silicon on insulator; Silvaco software; Work function;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. Harpe, A. Baschirotto, and K. A. A. Makinwa, Advances in Analog (Springer, New York, 2014) p. 418.
2 C. Meinhardt, A. L. Zimpeck, and R. A. L. Reis, Microelectron. Reliab., 54, 2319 (2014).   DOI   ScienceOn
3 S. K. Mohapatra, K. P. Pradhan, and P. K. Sahu, Trans. Electr. Electron. Mater., 14, 291 (2013).   DOI   ScienceOn
4 S. K. Mohapatra, K. P. Pradhan, and P. K. Sahu, Int. J. Adv. Sci. Technol., 65, 19 (2014).   DOI
5 W. T. Huang and Y. Li, Nanoscale Res. Lett., 10, 1 (2015).   DOI   ScienceOn
6 Z. Arefinia, Mater. Sci. Semicond. Process., 16, 1240 (2013).   DOI   ScienceOn
7 K. P. Pradhan, S. K. Mohapatra, P. K. Agarwal, P. K. Sahu, D. K. Behera, and J. Mishra, Microelectron. Solid-State Electron., 2, 1 (2013).
8 M. Zakir Hossain, Md. Alamgir Hossain, Md. Saiful Islam, Md. Mijanur Rahman, and M. Haque Chowdhury, Global Journals Inc., 11, 7 (2011).
9 J. P. Collinge, FinFET and Other Multi-Gate Transistors (Springer, New York, 2008) p. 339.   DOI
10 J. P. Colinge, Microelectron. Eng., 84, 2071 (2007).   DOI   ScienceOn
11 C. Hu, Modern Semiconductor Devices for Integrated Circuits (Pearson/Prentice Hall, New Jersey, 2010) p. 351.
12 S. International, Atlas User's Manual Device Simulation Software (Silvaco Int., Santa Clara, 2012).
13 E. Bernard, T. Ernst, B. Guillaumot, N. Vulliet, X. Garros, V. Maffini-Alvaro, P. Coronel , T. Skotnicki, and S. Deleonibus, Solid-State Electron., 52, 1297 (2008).   DOI   ScienceOn