Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.2.62

Performance of Solution Processed Zn-Sn-O Thin-film Transistors Depending on Annealing Conditions  

Han, Sangmin (Department of Semiconductor Engineering, Cheongju University)
Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
Choi, Jun Young (Department of Electrical Engineering, Korea University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.2, 2015 , pp. 62-64 More about this Journal
Abstract
We have investigated zinc tin oxide (ZTO) thin films under various silicon ratios. ZTO TFTs were fabricated by solution processing with the bottom gate structure. Furthermore, annealing process was performed at different temperatures in various annealing conditions, such as air, vacuum and wet ambient. Completed fabrication of ZTO TFT, and the performance of TFT has been compared depending on the annealing conditions by measuring the transfer curve. In addition, structure in ZTO thin films has been investigated by X-ray diffraction spectroscopy (XRD) and Scanning electron microscope (SEM). It is confirmed that the electrical performance of ZTO TFTs are improved by adopting optimized annealing conditions. Optimized annealing condition has been found for obtaining high mobility.
Keywords
Oxide TFT; ZTO; Thin film transistor; $N_2$; Vacuum; Wet; Annealing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Wu, X. Li, J. Lu, Z. Ye, J. Zhang, T. Zhou, R. Sun, L. Chen, B. Lu, and X. Pan, Appl. Phys. Lett., 103, 082109 (2013). [DOI: http://http://dx.doi.org/10.1063/1.4818728].   DOI   ScienceOn
2 E. G. Chong, I. J. Kang, C. H. Park, and S. Y. Lee, Thin Solid Films, 534, 609 (2013). [DOI: http://http://dx.doi.org/10.1016/j.tsf.2013.02.033].   DOI   ScienceOn
3 P. B. Shea and J. Kanicki, J. Appl. Phys., 98, 014503 (2005). [DOI: http://http://dx.doi.org/10.1063/1.1949713].   DOI   ScienceOn
4 K. Nomura, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett., 93, 192107 (2008). [DOI: http://http://dx.doi.org/10.1063/1.3020714].   DOI   ScienceOn
5 J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 92, 072104 (2008). [DOI: http://http://dx.doi.org/10.1063/1.2838380].   DOI   ScienceOn
6 T. Kamiya, K. Nomura, and H. Hosono, Journal of display Technology, 5, 468 (2009). [DOI: http://http://dx.doi.org/10.1109/JDT.2009.2034559].   DOI   ScienceOn
7 T. Kamiya, K. Nomura, and H. Hosono, Journal of Display Technology, 5, 462 (2009). [DOI: http://http://dx.doi.org/10.1109/JDT.2009.2022064].   DOI   ScienceOn
8 E. Chong, Y. S. Chun, S. H. Kim, and S. Y. Lee, Journal of Electrical Engineering & Technology, 6, 539 (2011). [DOI: http://http://dx.doi.org/10.5370/JEET.2011.6.4.539].   DOI   ScienceOn
9 H. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: http://http://dx.doi.org/10.1038/nature03090].   DOI   ScienceOn
10 E.M.C. Fortunato, L.M.N. Pereira, P.M.C. Barquinha, A.M.B. do Rego, G. Goncalves, A. Vila', J. R. Morante, and R.F.P. Martins, Appl. Phys. Lett., 92, 222103 (2008). [DOI: http://http://dx.doi.org/10.1063/1.2937473].   DOI   ScienceOn
11 J. Y. Choi, S. S. Kim, and S. Y. Lee, J. Nanosci. Nanotechnol., 13, 7089 (2013). [DOI: http://http://dx.doi.org/10.1166/jnn.2013.7632].   DOI
12 D. H. Son, D. H. Kim, J. H. Kim, S. N. Park, S. J. Sung, and J. K. Kang, J. Nanosci. Nanotechnol., 13, 4211 (2013). [DOI: http://http://dx.doi.org/10.1166/jnn.2013.7026].   DOI
13 C. Guill'en and J. Herrero, J. Appl. Phys., 101, 073514 (2007). [DOI: http://http://dx.doi.org/10.1063/1.2715539].   DOI   ScienceOn
14 S. Park, S. Bang, S. Lee, J. Park, Y. Ko, and H. Jeon, J. Nanosci. Nanotechnol., 11, 6029 (2011). [DOI: http://http://dx.doi.org/10.1166/jnn.2011.4360].   DOI