Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.6.328

Effect of Sputtering Power on the Change of Total Interfacial Trap States of SiZnSnO Thin Film Transistor  

Ko, Kyung-Min (Department of Semiconductor Engineering, Cheongju University)
Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.6, 2014 , pp. 328-332 More about this Journal
Abstract
Thin film transistors (TFTs) with an amorphous silicon zinc tin oxide (a-2SZTO) channel layer have been fabricated using an RF magnetron sputtering system. The effect of the change of excitation electron on the variation of the total interfacial trap states of a-2SZTO systems was investigated depending on sputtering power, since the interfacial state could be changed by changing sputtering power. It is well known that Si can effectively reduce the generation of the oxygen vacancies. However, The a-2SZTO systems of ZTO doped with 2 wt% Si could be degraded because the Si peripheral electron belonging to a p-orbital affects the amorphous zinc tin oxide (a-ZTO) TFTs of the s-orbital overlap structure. We fabricated amorphous 2 wt% Si-doped ZnSnO (a-2SZTO) TFTs using an RF magnetron sputtering system. The a-2SZTO TFTs show an improvement of the electrical property with increasing power. The a-2SZTO TFTs fabricated at a power of 30 W showed many of the total interfacial trap states. The a-2SZTO TFTs at a power of 30 W showed poor electrical property. However, at 50 W power, the total interfacial trap states showed improvement. In addition, the improved total interfacial states affected the thermal stress of a-2SZTO TFTs. Therefore, a-2SZTO TFTs fabricated at 50 W power showed a relatively small shift of threshold voltage. Similarly, the activation energy of a-2SZTO TFTs fabricated at 50 W power exhibits a relatively large falling rate (0.0475 eV/V) with a relatively high activation energy, which means that the a-2SZTO TFTs fabricated at 50 W power has a relatively lower trap density than other power cases. As a result, the electrical characteristics of a-2SZTO TFTs fabricated at a sputtering power of 50 W are enhanced. The TFTs fabricated by rf sputter should be carefully optimized to provide better stability for a-2SZTO in terms of the sputtering power, which is closely related to the interfacial trap states.
Keywords
RF magnetron sputtering; Activation energy; Total interfacial trap state; Sputtering power; Amorphous structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Kamiya, K. Nomura, and H. Hosono, Journal of display Technology, 5, 468 (2009). [DOI: http//dx.doi.org/10.1109/JDT.2009.2034559].   DOI
2 T. Kamiya, K. Nomura, and H. Hosono, Journal of Display Technology, 5, 462 (2009). [DOI: http//dx.doi.org/10.1109/JDT.2009.2022064].   DOI   ScienceOn
3 E. Chong, Y. S. Chun, S. H. Kim, and S. Y. Lee, Journal of Electrical Engineering & Technology, 6, 539 (2011). [DOI: http//dx.doi.org/10.5370/JEET.2011.6.4.539].   DOI   ScienceOn
4 E. Chong, I. Kang, C. H. Park, S. Y. Lee, Thin Solid Films, 534, 609 (2013). [DOI: http//dx.doi.org/10.1016/j.tsf.2013.02.033].   DOI
5 S. H. Kim, Y. S. Chun, E. Chong, K. C. Jo, C. I. Kim, and S. Y. Lee, In Abstract Book of the 6th International Workshop on ZnO and Related Materials (2010).
6 I. Kang, C. H. Park, E. Chong, and S. Y. Lee, Current Applied Physics, 12, S12 (2012). [DOI: http//dx.doi.org/10.1016/j.cap.2012.05.044].   DOI
7 J. Y. Choi, S. S. Kim, and S. Y. Lee, Applied Physics Letters, 100, 022109 (2012). [DOI: http//dx.doi.org/10.1063/1.3669700].   DOI   ScienceOn
8 E. G. Chong, I. J. Kang, C. H. Park, and S. Y. Lee, Thin Solid Films, 534, 609 (2013). [DOI: http//dx.doi.org/10.1016/j.tsf.2013.02.033].   DOI
9 M. K. Ryu, S. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, Applied Physics Letters, 95, 072104 (2009). [DOI: http//dx.doi.org/10.1063/1.3206948].   DOI   ScienceOn
10 B. Kim, E. Chong, D. H. Kim, Y. W. Jeon, D. H. Kim, and S. Y. Lee, Applied Physics Letters, 99, 062108 (2011). [DOI: http//dx.doi.org/10.1063/1.3615304].   DOI
11 C. H. Ahn, K. Senthil, H. K. Cho, and S. Y. Lee, Scientific Reports, 3 (2013). [DOI: http//dx.doi.org/10.1038/srep02737].   DOI
12 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: http//dx.doi.org/10.1038/nature03090].   DOI   ScienceOn
13 B. S. Yang, S. Oh, Y. J. Kim, S. J. Han, H. W. Lee, H. J. Kim, and H. J. Kim, Journal of Vacuum Science & Technology B, 32, 011202 (2014). [DOI: http//dx.doi.org/10.1116/1.4832329].   DOI