Browse > Article
http://dx.doi.org/10.4313/TEEM.2013.14.4.172

Effective Stress Modeling of Membranes Made of Gold and Aluminum Materials Used in Radio-Frequency Microelectromechanical System Switches  

Singh, Tejinder (Department of Electronics & Communication Engineering, Lovely Professional University)
Publication Information
Transactions on Electrical and Electronic Materials / v.14, no.4, 2013 , pp. 172-176 More about this Journal
Abstract
Microelectromechanical system switches are becoming more and more popular in the electronics industry; there is a need for careful selection of the materials in the design and fabrication of switches for reliability and performance issues. The membrane used for actuation to change the state of an RF switch is made mostly using gold or aluminum. Various designs of membranes have been proposed. Due to the flexure-type structures, the design complexity increases, which makes stress analysis mandatory to validate the reliability and performance of a switch. In this paper, the effective stress and actuation voltage required for different types of fixed-fixed membranes is analyzed using finite element modeling. Effective measures are presented to reduce the stress and voltage.
Keywords
RF MEMS; Effective stress; Finite element modeling; MEMS designing; Stress in Au and Al;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. E. Peterson, IBM J. Res. Develop., 23, 376 (1979) [DOI: http://dx.doi.org/10.1147/RD.234.0376].   DOI
2 C. T. Nguyen, The 11th Annual International Workshop on Micro Electro Mechanical Systems (Heidelberg) (Center for Integrated Sensors & Circuits, Michigan Univ., Ann Arbor, MI, USA 1998 Jan 25 - 29) p. 1 [DOI: http://dx.doi.org/10.1109/MEMSYS.1998.659719].   DOI
3 G. M. Rebeiz, RF MEMS Theory, Design and Technology (John Wiley & Sons, USA, 2003).
4 J. B. Muldavin and G. M. Rebeiz, IEEE Trans. Microw. Theory Techn., 48, 1053 (2000) [DOI: http://dx.doi.org/10.1109/22.904744].   DOI   ScienceOn
5 Z. J. Yao, S. Chen, E. Eshelman, D. Denniston and C. L. Goldsmith, IEEE J. Microelectromech. Systems, 8, 129 (1999) [DOI:http://dx.doi.org/10.1109/84.767108] .   DOI   ScienceOn
6 S. P. Pacheco, L. P. B. Katehi and C. T. Nguyen, Microwave Symposium Digest. 2000 IEEE MTT-S International (USA) (Radiat. Lab., Michigan Univ., Ann Arbor, MI, USA 2000 Jun 11-16) p. 165 [DOI: http://dx.doi.org/10.1109/MWSYM.2000.860921].   DOI
7 M. Ruan, J. Shen and C. B. Wheeler, Micro Electro Mechanical Systems, 2001. MEMS 2011. The 14th IEEE International Conference on (USA) (Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA 2001 Jan 21-25) p. 224 [DOI: http://dx.doi.org/10.1109/MEMSYS.2001.906519].   DOI
8 H. C. Lee, J. H. Park, J. Y. Park, H. J. Nam and J. U. Bu, Journal of Micromechanics and Microengineering. 15, 2098 (2005) [DOI:http://dx.doi.org/10.1088/0960-1317/15/11/015].   DOI   ScienceOn
9 M. Daneshmand, S. Fauladi, R. R. Mansour, M. Lisi and T. Stajcer, Microwave Symposium Digest, 2009. MTT-S International (USA) (Microwave to Millimeter-wave Lab., Univ. of Alberta, Edmonton, AB, Canada 2009 Jun 07-12) p. 1217 [DOI: http://dx.doi.org/10.1109/MWSYM.2009.5165922].   DOI
10 W. M. V. Spenger, R. Puers and I. D. Wolf, J. Adhesion Sci. Technol. 17, 563 (2003) [DOI: http://dx.doi.org/10.1163/15685610360554410].   DOI   ScienceOn
11 N. Khaira, T. Singh and J. Sengar, Trans. Electr. Electron. Mater. 14, 116 (2013) [DOI: http://dx.doi.org/10.4313/TEEM.2013.14.3.116].   DOI   ScienceOn