Browse > Article
http://dx.doi.org/10.4313/TEEM.2013.14.3.156

Controllability of Threshold Voltage of ZnO Nanowire Field Effect Transistors by Manipulating Nanowire Diameter by Varying the Catalyst Thickness  

Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
Publication Information
Transactions on Electrical and Electronic Materials / v.14, no.3, 2013 , pp. 156-159 More about this Journal
Abstract
The electrical properties of ZnO nanowire field effect transistors (FETs) have been investigated depending on various diameters of nanowires. The ZnO nanowires were synthesized with an Au catalyst on c-plane $Al_2O_3$ substrates using hot-walled pulsed laser deposition (HW-PLD). The nanowire FETs are fabricated by conventional photo-lithography. The diameter of ZnO nanowires is simply controlled by changing the thickness of the Au catalyst metal, which is confirmed by FE-SEM. It has been clearly observed that the ZnO nanowires showed different diameters simply depending on the thickness of the Au catalyst. As the diameter of ZnO nanowires increased, the threshold voltage of ZnO nanowires shifted to the negative direction systematically. The results are attributed to the difference of conductive layer in the nanowires with different diameters of nanowires, which is simply controlled by changing the catalyst thickness. The results show the possibility for the simple method of the fabrication of nanowire logic circuits using enhanced and depleted mode.
Keywords
ZnO nanowire; Nanowire field effect transistor; Threshold voltage; Diameter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, Appl. Phys. Lett. 93, 033513 (2008) [DOI: http://dx.doi.org/10.1063/1.2963978].   DOI   ScienceOn
2 U. OzgUr, Y. I. Alivov, C. Liu, A. Teke,b_ M. A. Reshchikov, S. Doan, V. Avrutin,Chen, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).   DOI   ScienceOn
3 Gang Xiong, John Wilkinson, Brian Mischuck, S. Tuzemen, K. B. and R. T. Williams, Appl. Phys. Lett. 80, 1195 (2002) [DOI:http://dx.doi.org/10.1063/1.1449528].   DOI   ScienceOn
4 Y. Ma, G. T. Du,a) S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, J. Appl. Phys. 95, 6268 (2004) [DOI: http://dx.doi.org/10.1063/1.1713040].   DOI   ScienceOn
5 Zhi Gen Yu, Ping Wua, Hao Gonga, Appl. Phys. Lett. 88, 132114 (2006) [DOI: http://dx.doi.org/10.1063/1.2192089].   DOI   ScienceOn
6 Huang H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P, Science 292, 1897, (2001) [DOI: http://dx.doi.org/10.1126/science.1060367].   DOI   ScienceOn
7 Park W I, Kim D H, Jung S W and Yi G C Appl. Phys Lett. 80, 4232 (2002) [DOI: http://dx.doi.org/10.1063/1.1482800].   DOI   ScienceOn
8 Greene L E, Law M, Goldberger J, Kim F, Johnson J C, Zhang Y F, Saykally R J and Yang P D Angew. Chem. Int. Edn. 42, 3031 (2003).   DOI   ScienceOn
9 Kodambaka S, Tersoff J, Reuter M C and Ross F M, Science. 316, 729 (2007) [DOI: http://dx.doi.org/10.1126/science.1139105].   DOI   ScienceOn
10 Shalish I, Temkin H and Narayanamurti V, Phys. Rev. B. 69, 245401 (2004) [DOI: http://dx.doi.org/10.1103/Phys-RevB.69.245401].   DOI   ScienceOn
11 Liao L, Lu H B, Li J C, He H, Wang D F, Fu D J, Liu C and Zhang W F, J. Phys. Chem. C, 111 1900 (2007) [DOI: http://dx.doi.org/10.1021/jp065963k].   DOI   ScienceOn
12 Chen C W, Chen K H, Shen C H, Ganguly A, Chen L C, Wu J J, Wen H I and Pong W F, Appl. Phys. Lett. 88, 241905 (2006) [DOI:http://dx.doi.org/10.1063/1.2211047].   DOI   ScienceOn
13 Lin K F, Cheng H M, Hsu H C, Lin L J and Hsieh W F. Chem. Phys. Lett. 409 208. (2005) [DOI: http://dx.doi.org/10.1016/j.cplett.2005.05.027].   DOI   ScienceOn
14 Wang R P, Xu G and Jin P, Phys. Rev. B. 69, 113303(2004) [DOI:http://dx.doi.org/10.1103/PhysRevB.69.113303].   DOI
15 Michael H. Hoang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, and Peidong Yang, Adv. Mater. 13, 113 (2001) [DOI:http://dx.doi.org/10.1002/1521-4095(200101)13:2<113::AIDADMA113> 3.0.CO;2-H].   DOI   ScienceOn
16 Woong-Ki Hong, Jung Inn Sohn, Dae-Kue Hwang, Soon-Shin Kwon, Gunho Jo, Sunghoon Song, Seong-Min Kim, Hang-Ju Ko, Seong-Ju Park, Mark E. Welland, and Takhee Lee, Nano lett.8, 950 (2008) [DOI: http://dx.doi.org/10.1021/nl0731116].   DOI   ScienceOn
17 XING Ying-Jie, XI Zhong-He, XUE Zeng-Quan, YU Da-Peng, CHIN.PHYS.LETT. 20, 700 (2003) [DOI: http://dx.doi.org/10.1088/0256-307X/20/5/331].   DOI   ScienceOn
18 Sang Hyun Lee, Seogwoo Lee, Jun-Seok Ha, Hyo-Jong Lee, Jae Wook Lee, Jeong Yong Lee, Soon-Ku Hong, Takenari Goto, Meoung Whan Cho and Takafumi Yao, J. Phys. D. 42, 225403 (2009) [DOI: http://dx.doi.org/10.1088/0022-3727/42/22/225403].   DOI   ScienceOn
19 S. Y. Lee, Y. W. Song, and K. A. Jeon, J. Cryst. Growth 310, 4477 (2008) [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2008.07.049].   DOI   ScienceOn
20 Haung M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P, Science 292, 1897 (2001) [DOI: http://dx.doi.org/10.1126/science.1060367].   DOI   ScienceOn
21 Yan H, Johnson J, Law M, He R, Knutsen K, Mckinneyang J R, Pham J, Saykally R and Yang P, Adv. Mater. 15, 1907 (2003) [DOI:http://dx.doi.org/10.1002/adma.200305490].   DOI   ScienceOn
22 Konenkamp R, Word R C and Schlegel C 2004 Appl. Phys. Lett. 85, 6004 (2004).   DOI   ScienceOn
23 Wang H T, Kang B S, Ren F, Tien L C, Sadik P W, Norton D P, Pearton S J and Lin J Appl. Phys. Lett. 86, 243503 (2005). [DOI:http://dx.doi.org/10.1063/1.1949707]   DOI   ScienceOn
24 Law M, Greene L E, Johnson J C, Saykally R and Yang P Nature Mater. 4, 455 (2005) [DOI: http://dx.doi.org/10.1038/nmat1387].   DOI   ScienceOn
25 X. Wang, J. Zhang, Z. Zhu, Appl. Surf. Sci. 252, 2404. (2006) DOI:http://dx.doi.org/10.1016/j.apsusc.2005.04.047].   DOI   ScienceOn
26 Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Appl. Surf. Sc. 242,212 (2005) [DOI: http://dx.doi.org/10.1016/j.apsusc.2004.08.013].   DOI   ScienceOn
27 Umasankar Yogeswaran and Shen-Ming Chen, Sensors, 8, 290-313 (2008) [DOI: http://dx.doi.org/10.3390/s8010290].   DOI