Browse > Article
http://dx.doi.org/10.4313/TEEM.2012.13.5.233

An Analysis of Driving Property of a Reflective Electronic Display Fabricated by Using Filtering Method of Non-moving Particles  

Kim, Young-Cho (Department of Electronic Engineering, Chungwoon University)
Publication Information
Transactions on Electrical and Electronic Materials / v.13, no.5, 2012 , pp. 233-236 More about this Journal
Abstract
The driving properties of a particle-insertion method that filters non-moving particles are analyzed, by measuring its optical and electrical properties. An area that is occupied by the moved particles is proposed, as a desirable evaluation method for a reflective display. To compare the driving property of the particle-moving method with that of the reported simple particle-loading method, two panels are fabricated, according to the different particle-insertion methods, in the same panel condition, of which the width of ribs is $30{\mu}m$, the cell size is $220{\mu}m{\times}220{\mu}m$, the cell gap is $116-120{\mu}m$, the q/m value of the black particles is $+1.8{\mu}C/g$ and that for the white particles is $-4.3{\mu}C/g$. The particle-moving method has a filtering effect which excludes the non-moving particles, inserting only movable particles into the respective cell, so that a panel fabricated by the particle-moving method can drive most of the particles in a cell. Also, most of the particles move at the threshold voltage of 40 V, with enhanced reflectivity. The driving property is also verified by measurement of the occupation rate of the moved particles.
Keywords
Reflective display; Particle-moving method; Filtering effect; Non-moving particle; Occupation rate;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Heikenfeld, N. Smith, M. Dhindsa, K. Zhou, M. Kilaru, L. Hou, J. Zhang, E. Kreit and B. Raj, Optics & Photonics News, Vol. 20, 20 (2009).
2 T. Z. Kosc, Optics & Photonics News, Vol. 16, pp. 18-23, 2005.
3 R. Hattori, S. Yamada, Y. Masuda and N. Nihei, SID 03 DIGEST, 846(2003).
4 C. W. Kim and Y. C. Kim, J. KIEEME, 23(9), 691 (2010) [DOI:10.4313/JKEM.2010,23,9.691].   DOI
5 R. Hattori, Y. Masuda, N. Nihei, R. Sakurai and S. Yamada, IMID 05 DIGEST, 845 (2005).
6 Y. C. Kim, J. KIEEME, 24(11), 915 (2011) [DOI:http://dx.doi.org/ 10.4313/JKEM.2011.24.11.915].   DOI   ScienceOn
7 J. Lee, R. E. Sloper, Y. H. Jeon, S. K. Han, S. Lee, K. H. Choi, W. H. and Y. C. Kim, SID DIGEST, 11, 1523 (2011).
8 D. J. Lee and Y. C. Kim, J. KIEEME, 25(2), 129 (2012) [DOI: dx.doi.org/10.4313/JKEM.2012.25.2.129].   DOI   ScienceOn
9 Korea Institute of Industrial Technology, ROK Patent, Application Number: No.10-2008-0052909 (2008).
10 D. J. Lee, Y. M. Oh, S. W. Park, B. E. Park and Y. C. Kim, J. DT, 8(6), 361(2012) [DOI: 10.1109/JDT.2012.2190135]   DOI   ScienceOn
11 V. M. Moreno-Villa, M. A. Ponce-Velez, E. Valle-Jaime and J.L. Fierro-Chavez, IEEE Proceedings. Generation, Transmission and Distribution, Vol. 145, 675 (1998).   DOI   ScienceOn
12 A. Henzen, SID 09 DIGEST, Vol. 40, 28 (2009).   DOI
13 R.J. Nash, H. Associates, J.T. Bickmore, M. L. Grande, T. Vasta and R. N. Muller, NIP24 and Digital Fabrication, 21 (2008).
14 R. Vergin, M. McDougall, M. Hawkins, C. Vong, V. Skorokhod and H. Schreiber, NIP24 and Digital Fabrication, 30 (2008).
15 D. K. Yang, J. W. Doane, Z. Yaniv and J. Glasser, Appl. Phys. Lett. Vol. 64, 1905 (1994)[DOI:http://dx.doi.org/10.1364/OME.2.001121].   DOI   ScienceOn
16 M.-K. Kim, Y.J. Lee, S.S. Bhattacharyya and M.-H. Lee, Current Applied Physics, Vol.11, 1192 (2011)[DOI:http//dx.doi.org/10.1016/j.cap.2011.02.018].   DOI