Browse > Article
http://dx.doi.org/10.4313/TEEM.2010.11.3.120

A Study on Distributions of Boron Ions Implanted by Using B and BF2 Dual Implantations in Silicon  

Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
Publication Information
Transactions on Electrical and Electronic Materials / v.11, no.3, 2010 , pp. 120-125 More about this Journal
Abstract
For the fabrication of PMOS and integrated semiconductor devices, B, $BF_2$ and dual elements with B and $BF_2$ can be implanted in silicon. 15 keV B ions were implanted in silicon at $7^{\circ}$ wafer tilt and a dose of $3.0{\times}10^{16}\;cm^{-2}$. 67 keV $BF_2$ ions were implanted in silicon at $7^{\circ}$ wafer tilt and a dose of $3.0{\times}10^{15}\;cm^{-2}$. For dual implantations, 67 keV $BF_2$ and 15keV B were carried out with two implantations with dose of $1.5{\times}10^{15}\;cm^{-2}$ instead of $3.0{\times}10^{15}\;cm^{-2}$, respectively. For the electrical activation, the implanted samples were annealed with rapid thermal annealing at $1,050^{\circ}C$ for 30 seconds. The implanted profiles were characterized by using secondary ion mass spectrometry in order to measure profiles. The implanted and annealed results show that concentration profiles for the ${BF_2}^+$ implant are shallower than those for a single $B^+$ and dual ($B^+$ and ${BF_2}^+$) implants in silicon. This effect was caused by the presence of fluorine which traps interstitial silicon and ${BF_2}^+$ implants have lower diffusion effect than a single and dual implantation cases. For the fabricated diodes, current-voltage (I-V) and capacitance-voltage (C-V) were also measured with HP curve tracer and C-V plotter. Electrical measurements showed that the dual implant had the best result in comparison with the other two cases for the turn on voltage characteristics.
Keywords
B; $BF_2$; F; Dual implantations; Secondary ion mass spectrometry; Computer simulation; Current-voltage; Capacitance-voltage;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. P. Biersack and J. F. Ziegler, “Ion Implantation Techniques”, Springer-Verlag, Berlin, (1982) p. 281.
2 T. E. Seidel, Nucl. Instrum. Methods Phys. Res. B 21, 96 (1987).   DOI   ScienceOn
3 J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 35, 205 (1988).   DOI   ScienceOn
4 M. C. Paek, O. J. Kwon, J. Y. Lee, and H. B. Im, J. Appl. Phys. 70, 4176 (1991).   DOI
5 C. W. Bates, Jr. , Appl. Phys. Lett. 45, 1058 (1984).   DOI
6 L. Gong, S. Bogen, L. Frey, W. Jung, and H. Ryssel, Microelectron. Eng. 19, 495 (1992) [DOI: 10.1016/0167-9317(92)90482-7].   DOI   ScienceOn
7 A. F. Tasch and S. K. Banerjee, Nucl. Instrum. Methods Phys. Res. Sect. B 112, 177 (1996) [DOI: 10.1016/0168-583X(95)01246-X].   DOI   ScienceOn
8 U. Littmark and J. F. Ziegler, Phys. Rev. 23, (1980) [DOI: 10.1103/PhysRevA.23.64].
9 L. Frey, S. Bogen, L. Gong, W. Jung, and H. Ryssel, Nucl. Instrum. Methods Phys. Res. Sect. B 62, 410 (1992) [DOI: 10.1016/0168-583X(92)95267-U].   DOI   ScienceOn
10 W. C. Jung and K. D. Lee, J. Korean Phys. Soc. 45, 1078 (2004).
11 R. G. Wilson, J. Appl. Phys. 54, 6879 (1983) [DOI: 10.1063/1.331993].   DOI   ScienceOn
12 W. S. Yoo, T. Fukada, T. Setokubo, K. Aizawa, and T. Ohsawa, Jpn. J. Appl. Phys. 42, 1123 (2003) [DOI: 10.1143/JJAP. 42.1123].   DOI
13 A. Dusch, J. Marcon, K. Masmoudi, F. Olivie, M. Benzohra, K. Ketata, and M. Ketata, Mater. Sci. Eng. B 80, 65 (2001) [DOI: 10.1016/S092-5107(00)00590-0].   DOI   ScienceOn
14 W. C. Jung, J. Korean Phys. Soc. 46, 1218 (2005).
15 H. Ryssel and I. Ruge, “Ion Implantation”, Wiley, New York, (1986) p. 125.
16 W. C. Jung, J. KEEME, 15, 289 (2002).