Browse > Article
http://dx.doi.org/10.4313/TEEM.2009.10.6.185

Effects of Growth Temperature on the Properties of ZnO Thin Films Grown by Radio-frequency Magnetron Sputtering  

Cho, Shin-Ho (Department of Electronic Materials Engineering, Silla University)
Publication Information
Transactions on Electrical and Electronic Materials / v.10, no.6, 2009 , pp. 185-188 More about this Journal
Abstract
The effects of the growth temperature on the properties of ZnO thin films were investigated by using X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectrophotometry, and Hall measurements. The ZnO films were deposited by rf magnetron sputtering at various growth temperatures in the range of 100-$400{^{\circ}C}$. A strong c-axis preferred orientation is observed for all of the samples. As the growth temperature increases, the crystalline orientation of the ZnO (002) plane is not changed, but the full width at half maximum gets smaller. The dependence of the electron concentration, mobility, and resistivity on the growth temperature exhibits that the ZnO films have a higher electron concentration at higher temperatures, thus giving them a low resistivity. The optical transmittance and band gap energy, calculated from the spectra of optical absorbance, show a significant dependence on the growth temperature. As for the sample grown at $100{^{\circ}C}$, the average transmittance is about 90% in the visible wavelength range and the band gap is estimated to be 3.13 eV.
Keywords
Zinc oxides; Thin film; Growth temperature; Sputtering;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. Ayouchi, D. Leinen, F. Martin, M. Gabas, E. Dalchiele, and J. R. Ramos-Barrado, Thin Solid Films, 426, 68 (2003)   DOI   ScienceOn
2 D. K. Hwang, K. H. Bang, M. C. Jeong, and J. M. Myoung, J. Cryst. Growth, 254, 449 (2003)   DOI   ScienceOn
3 J. H. Lee, K. H. Ko, and B. O. Park, J. Cryst. Growth, 247, 119 (2003)   DOI   ScienceOn
4 T. L. Phan, Y. K. Sun, R. Vincent, D. Cherns, N. X. Nghia, and S. C. Yu, J. Korean. Phys. Soc. 52, 1633 (2008)   DOI   ScienceOn
5 Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, and C. J. Youn, Appl. Phys. Lett. 87, 153504 (2005)   DOI   ScienceOn
6 P. H. Ngan, N. Q. Tien, D. T. Dat, P. V. Nho, N. X. Nghia, and S. C. Yu, J. Korean. Phys. Soc. 52, 1594 (2008)   DOI   ScienceOn
7 V. Craciun, J. elders, J. G. E. Gardeniers, and I. W. Boyd, Appl. Phys. Lett. 65, 2963 (1994)   DOI   ScienceOn
8 M. Abouzaid, P. Tailpied, P. Ruterana, C. Liu, B. Xiao, S. J. Cho, Y. T. Moon, and H. Morkoc, Superlatta. Microstruct. 39, 387 (2005)   DOI   ScienceOn
9 S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, J. Appl. Phys. 98, 013505 (2005)   DOI   ScienceOn
10 R. Ondo-Ndong, F. Pascal-Delannoy, A. Boyer, A. Giani, and A. Foucaran, Mater. Sci. Eng. B, 97, 68 (2003)   DOI   ScienceOn
11 C. S. Son, S. M. Kim, Y. H. Kim, S. I. Kim, Y. T. Kim, K. H. Yoon, I. H. Choi, and H. C. Lopez, J. Korean. Phys. Soc. 45, S685 (2004)
12 S. Cho, J. Korean. Phys. Soc. 49, 985 (2006)
13 L. Zhu, Z. Ye, F. Zhuge, G. Yuan, and J. Lu, Surf. Coat. Technol. 198, 354 (2005)   DOI   ScienceOn
14 S. Bose, S. Kim, S. H. Jeong, S. S. Kim, and B. T. Lee, Semicond. Sci. Technol. 19, L29 (2004)   DOI   ScienceOn
15 H. W. Kim and N. H. Kim, Mater. Sci. Eng. B, 103, 297 (2003)   DOI   ScienceOn
16 Y. M. Lu, C. M. Chang, S. I. Tsai, and T. S. Wey, Thin Solid Films, 447/448, 56 (2004)   DOI   ScienceOn
17 F. Yakuphanoglu, M. Sekerci, and O. F. Ozturk, Opt. Comm. 239, 275 (2004)   DOI   ScienceOn
18 Y. Liu and J. Lian, Appl. Surf. Sci. 253, 3727 (2007)   DOI   ScienceOn