Browse > Article
http://dx.doi.org/10.12941/jksiam.2015.19.327

ANALYSIS ON GENERALIZED IMPACT ANGLE CONTROL GUIDANCE LAW  

LEE, YONG-IN (DEPARTMENT OF GUIDANCE AND CONTROL, AGENCY FOR DEFENSE DEVELOPMENT)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.19, no.3, 2015 , pp. 327-364 More about this Journal
Abstract
In this paper, a generalized guidance law with an arbitrary pair of guidance coefficients for impact angle control is proposed. Under the assumptions of a stationary target and a lag-free missile with constant speed, necessary conditions for the guidance coefficients to satisfy the required terminal constraints are obtained by deriving an explicit closed-form solution. Moreover, optimality of the generalized impact-angle control guidance law is discussed. By solving an inverse optimal control problem for the guidance law, it is found that the generalized guidance law can minimize a certain quadratic performance index. Finally, analytic solutions of the generalized guidance law for a first-order lag system are investigated. By solving a third-order linear time-varying ordinary differential equation, the blowing-up phenomenon of the guidance loop as the missile approaches the target is mathematically proved. Moreover, it is found that terminal misses due to the system lag are expressed in terms of the guidance coefficients, homing geometry, and the ratio of time-to-go to system time constant.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. K. Ryoo, H. Cho, and M. J. Tahk, Optimal guidance laws with terminal impact angle constraints, J. Guid. Control. Dynam., 28(4) (2005), 724-732.   DOI   ScienceOn
2 M. Kim and K. V. Grider, Terminal guidance for impact attitude angle constrained flight trajectories, IEEE T. Aero. Elec. Sys., 9(6) (1973), 852-859.
3 A. E. Bryson, Jr. and Y-C Ho, Applied Optimal Control, John Wiley & Sons, (1975), 154-155.
4 J. Z. Ben-Asher, Optimal trajectories for an unmanned air-vehicle in the horizontal plane, J. Aircraft, 32(3) (1995), 677-680.   DOI   ScienceOn
5 Y. I. Lee, C. K. Ryoo, and E. Kim, Optimal guidance with constraints on impact angle and terminal acceleration, P. AIAA Guid. Nav. Cont. Conf., Austin, TX, Aug. (2003).
6 C. K. Ryoo, H Cho, and M. J. Tahk, Time-to-go weighted optimal guidance with impact angle constraints, IEEE T. Cont. Sys. Tech., 14(3) (2006), 483-492.   DOI   ScienceOn
7 J. I. Lee, I. S. Jeon, and M. J. Tahk, Guidance law to control impact time and angle, IEEE T. Aero. Elec. Sys., 43(1) (2007), 301-310.   DOI   ScienceOn
8 B. S. Kim, J. G. Lee, and H. S. Han, Biased PNG law for impact with angular constraint, IEEE T. Aero. Elec. Sys., 34(1) (1998), 277-288.   DOI   ScienceOn
9 R. E. Kalman, When is a linear control system optimal?, Trans. ASME, J. Basic Eng., Ser. D, 86 (1964), 51-60.   DOI
10 E. Kreindler and A. Jameson, Optimality of linear control systems, IEEE T. Automat. Contr., 17 (1972), 349-351.   DOI
11 E. Kreindler, Optimality of proportional navigation, AIAA J., 11(6) (1973), 878-880.   DOI
12 A. Jameson and E. Kreindler, Inverse problem of linear optimal control, SIAM J. Control, 11(1) (1973), 1-19.   DOI
13 M. Guelman, The closed-form solution of the true proportional navigation, IEEE T. Aero. Elec. Sys., 12(4) (1976), 472-482.
14 C. K. Ryoo, H. Cho, and M. J. Tahk, Closed-form solutions of optimal guidance with terminal impact angle constraints, P. IEEE Int'l Conf. Contr. Appl., Istanbul, Turkey, (2003), 504-509.
15 A. C. Baker and H. L. Porteous, Linear Algebra and Differential Equations, Ellis Horwood, (1990), 102-140.
16 F. B. Hilderbrand, Advanced Calculus for Applications, Second Edition, Prentice-Hall, (1976), 118-185.
17 B. Noble and J. W. Daniel, Applied Linear Algebra, Third Edition, Prentice-Hall, Englewood Cliffs, New Jersey, (1988).
18 M. A. Sanchis-Lozano, On the connection between generalized hypergeometric functions and dilogarithms, hep-ph/9511322, IFIC-95-51 (1995), 1-11.
19 Y. I. Lee, S. H. Kim, and M. J. Tahk, Analytic solutions of optimal angularly constrained guidance for firstorder lag system, Proc. IMechE Part G: J. Aero. Eng., DOI: 10.1177/0954410012442617, (2012).   DOI   ScienceOn
20 Y. I. Lee, S. H. Kim, and M. J. Tahk, Optimality of Linear Time-Varying Guidance for Impact Angle Control, IEEE T. Aero. Elec. Sys., 48(3) (2012), 2802-2817.   DOI   ScienceOn
21 Y. I. Lee, J. I. Lee, S. H. Kim, and M. J. Tahk, Analytic solutions of Generalized Impact-Angle-Control Guidance Law for First-Order Lag System, J. Guid. Control Dynam, 36(1) (2013), 96-112.   DOI   ScienceOn