Browse > Article

THE RELATIONSHIP BETWEEN NONCOMMUTATIVE AND LORENTZVIOLATING PARAMETERS IN QUANTUM  

HEIDARI, A. (INSTITUTE FOR ADVANCED STUDIES)
GHORBANI, F. (INSTITUTE FOR ADVANCED STUDIES)
GHORBANI, M. (INSTITUTE FOR ADVANCED STUDIES)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.16, no.3, 2012 , pp. 205-216 More about this Journal
Abstract
When it comes to Lorentz symmetry violation, there are generally two approaches to studying noncommutative field theory: 1) conventional fields are equivalent to noncommutative fields; however, symmetry groups are larger. 2) The symmetry group is the same as conventional standard model's symmetry group; but fields here are written based on the Seiberg-Witten map. Here by adopting the first approach, we aim to connect Lorentz violation coefficients with noncommutative parameters and compare the results with the second approach's results. Through the experimental values obtained for the Lorentz-violating parameters, we obtain a limit of noncommutative symmetry.
Keywords
Lorentz violation; Seiberg-Witten map; Quantum electrodynamics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. W. Greenberg, CPT Violation Implies Violation of Lorentz Invariance, Phys. Rev. Lett. 89 (2002) 2316021.   DOI
2 D. Colladay and V. A. Kostelecky, CPT violation and the standard model, Phys. Rev. D. 55 (1997) 6760.   DOI
3 R. Lehnert, CPT and Lorentz violation as signatures for Planck-scale physics, J. Phys, Conf. Ser. 171 (2009) 012036.   DOI
4 D. Colladay and V. A. Kostelecky, Lorentz-violating extension of the standard model, Phys. Rev. D. 58 (1998) 116002.   DOI
5 V. A. Kostelecky and N. Russell, Data Tables for Lorentz and CPT Violation, hep-ph: 0801.0287 (2008).
6 V. A. Kostelecky and C. Lane, Constraints on Lorentz violation from clock-comparison experiments, hepph/9908504v1 (1999).
7 P. Wolf, F. Chapelet, S. Bize, and A. Clairon, Cold Atom Clock Test of Lorentz Invariance in the Matter Sector, Phys. Rev. Lett. 96, 060801(2006).   DOI
8 R. Bluhm,V. A. Kostelecky, and N. Russell., Searching for Lorentz Violation in the Ground State of Hydrogen, hep-ph/ 0003223 (2006).
9 P. L. Stanwix, M.E. Tobar, P. Wolf, C.R. Locke, and E.N. Ivanov, Improved test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire oscillators, Phys. Rev. D 74 (2006) 081101.   DOI
10 L. B. Auerbach et al., Tests of Lorentz violation in ν̅μ→ν̅e oscillations, Phys. Rev. D 72 (2005) 076004.   DOI
11 C. P. Martin, D. Sanchez-Ruiz, and C. Tamarit, The noncommutative U(1) Higgs-Kibble model in the enveloping-algebra formalism and its renormalizability, JHEP. 02 (2007) 065.
12 S. M. Carroll, J. A. Harvey, V. A. Kostelecky, C. D. Lane, and T. Okamoto, Noncommutative Field Theory and Lorentz Violation, Phys. Rev. Lett. 84 (2001) 141601.
13 M. Hayakawa, Perturbative analysis on infrared aspects of noncommutative QED on R4, Phys. Lett. B 478(2000) 394.   DOI
14 A. Alboteanu, T. Ohl, and R. Ruckl, Probing the noncommutative standard model at hadron colliders, Phys. Rev. D 74 (2006) 096004.   DOI
15 X. Calmet, B. Jurco, P. Schupp, J. Wess, and M. Wohlgenannt, The standard model on non-commutative space-time, Eur. Phys. J. C 23 (2002) 363.   DOI
16 N. Seiberg and E. Witten, String Theory and Noncommutative Geometry, JHEP. 032 (1999) 9909.
17 L. Moller, Second order expansion of action functionals of noncommutative gauge theories, JHEP. 10 (2004) 063.
18 B. Jurco, L. Moller, S. Schraml, P. Schupp and J. Wess, Construction of non-Abelian gauge theories on noncommutative spaces, Eur. Phys. J. C 21 (2001) 383.   DOI
19 M. Moumni, A. BenSlama, and S. Zaim, A new limit for the noncommutative space-time parameter, Journal of Geometry and Physic, 61, 1 (2011) 151-156.   DOI
20 V. A. Kostelecky and M. Mewes, Lorentz-Violating Electrodynamics and the Cosmic Microwave Background, Phys. Rev. Lett. 99 (2007) 011601.   DOI
21 A. Kostelecky and C. Lane, Constraints on Lorentz violation from clock-comparison experiments, Phys. Rev. D 60 (1999) 116010.   DOI
22 H. Muller, S. Herrmann, A. Saenz, A. Peters, and C. Lammerzahl, Optical cavity tests of Lorentz invariance for the electron, Phys. Rev. D 68 (2003) 116006.   DOI
23 V. A. Kostelecky and M. Mewes, Sensitive Polarimetric Search for Relativity Violations in Gamma-Ray Bursts, Phys. Rev. Lett. 97 (2006) 140401.   DOI
24 H. Muller, P. L. Stanwix, M. E. Tobar, E. Ivanov, P. Wolf, S. Herrmann, A. Senger, E. Kovalchuk, and A. Peters, Tests of Relativity by Complementary Rotating Michelson-Morley Experiments, Phys. Rev. Lett. 99 (2007) 050401.   DOI
25 B. Altschul, Testing Electron Boost Invariance with 2S-1S Hydrogen Spectroscopy, arxiv:0912.0530.
26 V. A. Kostelecky and M. Mewes, Signals for Lorentz violation in electrodynamics, Phys. Rev. D 66 (2002) 056005.   DOI
27 S. Herrmann, A. Senger, K. Mohle, M. Nagel, E. V. Kovalchuk, and A. Peters, Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level, Phys. Rev. D 80 (2009) 105011.   DOI
28 V. A. Kostelecky, C. D. Lane, and A. G. M. Pickering, One-loop renormalization of Lorentz-violating electrodynamics, Phys. Rev. D 65 (2002) 056006.   DOI