Browse > Article
http://dx.doi.org/10.12941/jksiam.2010.14.1.001

MODELING AND ANALYSIS OF AN EPIDEMIC MODEL WITH CLASSICAL KERMACK-MCKENDRICK INCIDENCE RATE UNDER TREATMENT  

Kar, T.K. (DEPARTMENT OF MATHEMATICS, BENGAL ENG. AND SCI. UNIV.)
Batabyal, Ashim (DEPARTMENT OF MATHEMATICS, BALLY NISCHINDA CHITTARANJAN VIDYALAYA)
Agarwal, R.P. (DEPARTMENT OF MATHEMATICS, FLORIDA INSTITUTE OF TECHNOLOGY)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.14, no.1, 2010 , pp. 1-16 More about this Journal
Abstract
An epidemic model with Classical Kermack-Mckendrick incidence rate under a limited resource for treatment is proposed to understand the effect of the capacity for treatment. We have assumed that treatment function is strictly increasing function of infective individuals and becomes constant when the number of infective is very large. Existence and stability of the disease free and endemic equilibrium are investigated, boundedness of the solutions are shown. Even in this simple version of the model, backward bifurcation and multiple epidemic steady states can be observed with some sets of parameter values. Hopf-bifurcation analyses are given and numerical examples are provided to help understanding.
Keywords
Epidemic; endemic equilibrium; treatment; basic reproductive number; limit cycle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Feng and H. R. Thieme, Recurrent out break of childhood diseases revisited: The impact of isolution, Math. Biosci. 128(1995) 93.   DOI   ScienceOn
2 M. Lizana, J. Rivero, Multiparametric bifurcation for a model in epidemiology, J. Math. Biol. 35 (1996) 21.   DOI   ScienceOn
3 X. C. Huang, M. Villasana, An extension of the Kermack-McKendrick model for AIDS epidemic, Journal of the Franklin Institute 342 (2005).
4 F. Brauer, Some simple epidemic models, Mathematical Biosciences and Engineering 3 (2006), 1-15.
5 J. Stepan, D. Hlubinka, Kermack-McKendrick epidemic model revisited, Kybernetika 43 (2007), 395-414.
6 W. Wang and Z. Ma, Global dynamics of an epidemic model with time delay, Nonlinear Anal. Real World Appl. 3 (2002) 365.   DOI   ScienceOn
7 W.Wang, Backward bifurcation of an epidemic model with treatment, Mathematical Biosciences 201 (2006) 58-71.   DOI   ScienceOn
8 J. Stanek, Kermack-McKendrick epidemics vaccinated, Kybernetika 44 (2008), 705-714.
9 S. Rauan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equat. 188 (2003) 135.   DOI   ScienceOn
10 F. Brauer, The Kermack-McKendrick epidemic model revisited, Mathematical Biosciences 198 (2005), 119-131.   DOI   ScienceOn
11 Y. Takeuchi, W. Ma, E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal. 42 (2000) 931.   DOI   ScienceOn
12 B. D. Hassard, B. D. Kazarinoff and Y. H. Wan, Theory and application of Hopf-bifurcation, Cambridge University Press, Cambridge, 1981.
13 O. Diekmann and J. A. P.Heesterbeek, Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation,Wiley Series in Mathematical and Computational Biology, JohnWiley and Sons, Chichester, 2000.
14 H. W. Hethcote, The mathematics of infectious disease, SIAM Rev. 42 (2000) 599.   DOI   ScienceOn
15 R. M. Anderson and R. M. May, Infectious Diseases of Humans, Dynamics and Control, Oxford University, Oxford, 1991.
16 F. Brauer and C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Texts in Applied Mathematics, 40, Springer, New York, 2001.
17 N. F. Britton, Essential Mathematical Biology, Springer, London, 2003.
18 G. Birkoff and GC. Rota, Ordinary differential equations, Ginn, 1982.
19 J. K. Hale, Ordinary Differential Equations, Wiley Interscience, New York, 1969.
20 H. Khalil, 1992, Nonlinear systems, Macmillan, New York.
21 O. Diekmann, J. A. P. Hecsterbeck and J. A. J. Metz, The legacy of Kermack and MacKendrick, in: D. Mollision (Ed.), in: Epidemic Models, their Structure and Relations to Data, Cambridge University, CamBridge, 1994.
22 W. O. Kermack and A. G. Mckendrick, A contribution to the mathematical theory of epidemic, Proc. R. Soc. London A115, (1927) 700-721.
23 L. Wu, Z. Feng, Homoclinic bifurcation in an SIQR model for childhood diseases, J. Differ. Equat. 168 (2000) 150.   DOI   ScienceOn
24 J. M. Hyman and J. Li, Modeling the effectiveness of isolation strategies in preventing STD epidemics, SIAM J. Appl. Math. 58 (1998) 912.   DOI   ScienceOn
25 H. W. Hethcote, A thousand and one epidemic models, in: S.A. Levin, Frontiers in Mathematical Biology, Lecture Notes in Biomathematics, vol. 100, Springer, Berlin, 1994, p. 504.
26 N. J. T. Bailey, in: The Mathematical Theory of Infectious Disease and its Applications, Griffin, London, 1975.