Browse > Article
http://dx.doi.org/10.5573/JSTS.2016.16.5.664

Modification of Schottky Barrier Properties of Ti/p-type InP Schottky Diode by Polyaniline (PANI) Organic Interlayer  

Reddy, P.R. Sekhar (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC) Chonbuk National University)
Janardhanam, V. (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC) Chonbuk National University)
Jyothi, I. (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC) Chonbuk National University)
Yuk, Shim-Hoon (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC) Chonbuk National University)
Reddy, V. Rajagopal (Department of Physics, Sri Venkateswara University)
Jeong, Jae-Chan (Electronics & Telecommunication Research Institute)
Lee, Sung-Nam (Department of Nano-Optical Engineering, Korea Polytechnic University)
Choi, Chel-Jong (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC) Chonbuk National University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.16, no.5, 2016 , pp. 664-674 More about this Journal
Abstract
The electrical properties of Ti/p-type InP Schottky diodes with and without polyaniline (PANI) interlayer was investigated using current-voltage (I-V) and capacitance-voltage (C-V) measurements. The barrier height of Ti/p-type InP Schottky diode with PANI interlayer was higher than that of the conventional Ti/p-type InP Schottky diode, implying that the organic interlayer influenced the space-charge region of the Ti/p-type InP Schottky junction. At higher voltages, the current transport was dominated by the trap free space-charge-limited current and trap-filled space-charge-limited current in Ti/p-type InP Schottky diode without and with PANI interlayer, respectively. The domination of trap filled space-charge-limited current in Ti/p-type InP Schottky diode with PANI interlayer could be associated with the traps originated from structural defects prevailing in organic PANI interlayer.
Keywords
Schottky diode; PANI; InP; barrier height; interface state density;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 O. Gullu, O. Pakma, and A. Turut, "Current density-voltage analyses and interface characterization in Ag/DNA/p InP structures," J. Appl. Phys., Vol. 111, No. 4, pp. 044503-1-044503-6, 2012.   DOI
2 V. R. Reddy, A. Umapathi, and S. Sankar Naik, "Influence of Annealing on Electrical Properties of an Organic Thin Layer-Based n-Type InP Schottky Barrier Diode," J. Electron. Mater., Vol. 42, No. 6, pp. 1282-1288, 2013.   DOI
3 S. Aydogan, M. Saglam, and A. Turut, "On the barrier inhomogeneities of polyaniline/p-Si/Al structure at low temperature," Appl. Surf. Sci., Vol. 250, No. 1, pp. 43-49, 2005.   DOI
4 M. Wolszczak, J. Kroh, and M. M. A. Hamid, "Some aspects of the radiation processing of conducting polymers," Radiat. Phys. Chem., Vol. 45, No. 1, pp. 71-78, 1995.   DOI
5 G. Gustafsson, G. M. Treacy, Y. Cao, F. Klavetter, N. Colaneri, and A. J. Heeger, "The "plastic" led: A flexible light-emitting device using a polyaniline transparent electrode," Synth. Met., Vol. 57, No. 1, pp. 4123-4127, 1993.   DOI
6 W. Deqi , D. Wuchang, Y. Shanshan, J. Rui, J. Zhi, and L. Xinyu," Optimization of ohmic contact for Inp-based transrerred electronic devices," J. Semicond., Vol. 35, No. 3, pp. 036001-1-036001-5, 2013.   DOI
7 O. F. Yuksel, M. Kus, N. Simsir, H. Safak, M. Sahin, and E. Yenel, "A detaile analysis of current- voltage characteristics of Au/perilene monoimide/n-Si Schottky barrier diode over a wide temperature range," J. Appl. Phys.,Vol. 110, No. 26, pp. 024507-1-024513-7, 2011.   DOI
8 J. Chen, Q. Wang, J. Lv, H. Tang, and X. Li, "Current-voltage-temperature and capacitancevoltage-temperature characteristics of TiW alloy/p-InP Schottky barrier diode," J. Alloy. Compd., Vol. 649, pp. 1220-1225, 2015.   DOI
9 V. Janardhanam, H. K. Lee, K. H. Shim, H. B.Hong, S. H. Lee, K. S. Ahn, C. J. Choi, "Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers," J. Alloy. Compd., Vol. 504, pp. 146-150, 2010.   DOI
10 B. Akkal, Z. Benamara, N. B. Bouiadjra, S. Tizi, B. Gruzza, "Illumination dependence of I-V and C-V characterization of Au/InSb/InP(1 0 0) Schottky structure," Appl. Surf. Sci., Vol. 253, No. 3, pp. 1065-1070, 2006.   DOI
11 O. F. Yuksel, N. Tugluoglu, H. Safak, and M. Kus, "The modification of Schottky barrier height of Au/p-Si Schottkydevices by perylene-diimide," J. Appl. Phys., Vol. 113, pp. 044507-1-044507-9, 2013.   DOI
12 M. E. Aydin, and F. Yakuphanoglu, "Electrical characterization of inorganic-on-organic diode based InP and poly(3,4-ethylenedioxithiophene)/poly(styrenesulfonate)(PEDOT:PSS)," Microelectronics Reliab., Vol. 52, No. 7, pp. 1350-1354, 2012.   DOI
13 N. Kavasoglu, C. Tozlu, O. Pakma, A. S. Kavasoglu, S. Ozden, B. Metin, O. Birgi, and S. Oktik, "Room-temperature interface state analysis of Au/Poly(4-vinyl phenol)/p-Si structure," Synth. Met., Vol. 159. No. 17, pp. 1880-1884, 2009.
14 M. Cakar, N. Yildirim, S. Karatas, C. Temirci, and A. Turut, "Current-voltage and capacitance-voltage characteristics of Sn/rhodamine- 101 / n - Si and Sn/rhodamine- 101 / p - Si Schottky barrier diodes," J. Appl. Phys., Vol. 100, No. 7, pp. 074505-1-074505-6, 2006.   DOI
15 T. U. Kampen, S. Park, and D. R. T. Zahn, "Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer," Appl. Surf. Sci., Vol. 190, pp. 461-466, 2002.   DOI
16 O. Gullu, "Ultrahigh (100%) barrier modification of n-InP Schottky diode by DNA biopolymer nanofilms," Microelectron. Eng., Vol. 87, No. 4, pp. 648-651, 2010.   DOI
17 M. Soylu, B. Abay, and Y. Onganer, "The effects of annealing on Au/pyronine-B/MD n-InP Schottky structure," J. Phys. Chem. Solids., Vol. 71, No. 9, pp. 1398-1403, 2010.   DOI
18 Rohan Mishra, Oscar D. Restrepo, Ashutosh Kumar, and Wolfgang Windl, "Native point defects in binary InP semiconductors," J. Mater. Sci., Vol. 47, pp 7482-7497, 2012   DOI
19 A.M. Rodrigues, H. L. Gomes, P. Stallinga, L. Pereira, and E. Pereira, "Electrical characterization of CVD diamond-$n^+$ silicon junctions," Diam. Relat. Mat., Vol. 10, No. 3-7, pp. 858-862, 2001.   DOI
20 S. K. Cheung, and N. W. Cheung, "Extraction of Schottky diode parameters from forward currentvoltage characteristics," Appl. Phys. Lett., Vol. 49, pp. 85-87, 1986.   DOI
21 M. Gokcen, T. Tunc, S. Altindal, and I. Uslu, "The effect of PVA ($Bi_2O_3$-doped) interfacial layer and series resistance on electrical characteristics of Au/n-Si (110) Schottky barrier diodes (SBDs)," Curr. Appl. Phys., Vol. 12, No. 2, pp. 525-530, 2012.   DOI
22 W. Monch, "Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities," J. Vac. Sci. Technol., Vol. B 17, No. 4, pp. 1867-1876, 1999.   DOI
23 Robert W. Jansen, "Theoretical study of native defects and impurities in InP," Phys. Rev. B, Vol. 41, pp. 7666-7673, 1990   DOI
24 H. Norde, "A modified forward I- V plot for Schottky diodes with high series resistance," J. Appl. Phys., Vol, 50, No. 7, pp. 5052-5053, 1979.   DOI
25 V. Janardhanam, Y. K. Park, H. J. Yun, K. S. Ahn, and C. J. Choi, "Conduction Mechanism of Se Schottky Contact to n-Type Ge," Eletron. Dev. Lett., Vol. 33, No. 33, pp. 949-951, 2012.   DOI
26 I. Jyothi, V. Janardhanam, Yi-Rang Lim, V. R. Reddy, Kwang-Soon Ahn, and Chel-Jong Choi, "Effect of copper phthalocyanine (CuPc) interlayer on the electrical characteristics of Au/n-GaN Schottky rectifier," Mater. Sci. Semicond. Process., Vol. 30, pp. 420-428, 2014.
27 M. Mamor, "Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts," J. Phys. Condens. Matter., Vol. 21, pp.335802-1-335802-12, 2009.   DOI
28 S. R. Forrest, "Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques," Chem. Rev., Vol. 97, No. 6, pp. 1793-1896, 1997.   DOI
29 V. Janardhanam, I. Jyothi, J. H. Lee, J. Y. Kim, V. R. Reddy, and C. J. Choi, "Electrical Properties and Carrier Transport Mechanism of Au/n-GaN Schottky Contact Modified Using a Copper Pthalocyanine (CuPc) Interlayer," Mater. Trans., Vol. 55, No. 5, pp. 758-762, 2014.   DOI
30 A. C. Varghese, and C. S. Menon, "Electrical properties of hybrid phthalocyanines thin films using gold and lead electrodes," Eur. Phys. J., Vol. 47, No. 4, pp. 485-489, 2005.   DOI
31 A. A. Kumar, V. R. Reddy, V. Janardhanam, M. W. Seo, H. B. Hong, K. S. Shin, and C. J. Choi, "Electrical Properties of Pt/n-Ge Schottky Contact Modified Using Copper Phthalocyanine (CuPc) Interlayer," J. Electrochem. Soc., Vol. 159, No. 1, pp. H33-H37, 2011.   DOI
32 R. T. Tung, "Recent advances in Schottky barrier concepts," Mater. Sci. Eng. R., Vol. 35, pp. 1-138, 2001.
33 P. Koteswara Rao, B. Park, S. T. Lee, Y. K.Noh, M. D. Kim, and J. E. Oh, "Analysis of leakeage current mechanisms in Pt/au Schottky contact on Gapolarity GaN by Frenkel-poolyemission and deep level studies," J. Appl. Phs., Vol. 110, pp. 013716-1-013716-5, 2011.   DOI
34 E.H. Rhoderick, and R.H. Williams, "Metal-Semiconductor Contacts," second ed. Clarendon, Oxford, pp. 39., 1988.
35 S.M. Sze, "Physics of Semiconductor Devices", second ed., John Wiley & Sons, New York., 1981.
36 H. K. Henisch, "Semiconductor Contacts," London, Oxford University, 1984.
37 A. R. Vearey-Roberts, and D. A. Evans, "Modification of GaAs Schottky diodes by thin organic interlayers," Appl. Phys. Lett., Vol. 86, No. 7, pp. 072105-1-072105-3, 2005.   DOI
38 I. Jyothi, V. Janardhanam, V. R. Reddy, and C. J. Choi, "Modified electrical characteristics of Pt/n-type Ge Schottky diode with a pyronine-B interlayer," Superlattices Microstruct., Vol. 75, pp. 806-817, 2014.   DOI
39 M. Saglam, and A. Turut, "Aging effects on the interface state density obtained from current-voltage and capacitance-frequency characteristics of polypyrrole/p-Si/Al structure," J. Appl. Polym. Sci., Vol. 101, No. 4, pp. 2313-2319, 2006.   DOI
40 H. C. Card, and E. H. Rhoderick, "Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes," J. Phys., Vol. 4, No. 10, pp. 1589-1601, 1971.
41 R. F. Schmitsdorf, T. U. Kampen, and W. Monch, "Explanation of the linear correlation between barrier heights and ideality factors of real metalsemiconductor contacts by laterally nonuniform Schottky barriers," J. Vac. Sci. Technol., Vol. 15, No. 4, pp. 1221-1226, 1997.   DOI