Browse > Article
http://dx.doi.org/10.5573/JSTS.2014.14.3.268

A Finite Element Model for Bipolar Resistive Random Access Memory  

Kim, Kwanyong (Department of Electronic Engineering, Sogang University)
Lee, Kwangseok (Department of Electronic Engineering, Sogang University)
Lee, Keun-Ho (Department of Electronic Engineering, Sogang University)
Park, Young-Kwan (Department of Electronic Engineering, Sogang University)
Choi, Woo Young (Department of Electronic Engineering, Sogang University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.14, no.3, 2014 , pp. 268-273 More about this Journal
Abstract
The forming, reset and set operation of bipolar resistive random access memory (RRAM) have been predicted by using a finite element (FE) model which includes interface effects. To the best of our knowledge, our bipolar RRAM model is applicable to realistic cell structure optimization because our model is based on the FE method (FEM) unlike precedent models.
Keywords
Realistic cell structure optimization; finite element method (FEM); bipolar resistive random access memory (RRAM);
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Zhang, X. Li, X. Gao, L. Wu, F. Zhuge, Q. Wang, X. Liu, R. Yang, and Y. He, "Effect of defect content on the unipolar resistive switching characteristics of ZnO thin film memory devices," Solid State Commun.,vol. 152, pp. 1630-1634, Sep. 2012.   DOI
2 A. Martin, P. O'Sullivan, A. Mathewson, B. Mason, and C. Beech, "Evaluation of the lifetime and failure probability for inter-poly oxides from RVS measurements," Microelectron. J., vol. 25, no. 7, pp. 553-557, Oct. 1994.   DOI
3 W.-C. Chen, M.-H. Lee, F.-M. Lee, Y.-Y. Lin, H.- L. Lung, K.-Y. Hsieh, and C.-Y. Lu, "A multi-level 40nm WOX resistive memory with excellent reliablity," in IEDM Tech. Dig., 2011, pp. 31.5.1-31.5.4.
4 D. Lee, D. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S. Seo, S. Heo, M. Jo, D.-K. Hwang, H. K. Park, M. Chang, M. Hasan, and H. Hwang, "A multi-level 40nm WOX resistive memory with excellent reliablity," in IEDM Tech. Dig., 2006, pp. 1-4.
5 Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, "Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity," in IEDM Tech. Dig., 2009, pp. 5.5.1-5.5.4.
6 D. Ielmini, "Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth," IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4309-4317, Dec. 2011.   DOI
7 B.Govoreanu, G.S.Kar, Y-Y.Chen, V.Paraschiv, S. Kubicek, A.Fantini, I.P.Radu, L.Goux, S.Clima, R.Degraeve, N.Jossart, O.Richard, T.Vandeweyer, K.Seo, P.Hendrickx, G. Pourtois, H.Bender, L.Altimime, D.J.Wouters, J.A.Kittl, and M.Jurczak, "$10x10nm^2$ $Hf/HfO_x$ crossbar resistive RAM with excellent performance, reliability and low-energy operation," in IEDM Tech. Dig., 2011, pp. 31.6.1-31.6.4.
8 S. B. Lee, J. S. Lee, S. H. Chang, H. K. Yoo, B. S. Kang, B. Kahng, M.-J. Lee, C. J. Kim, and T. W. Noh, "Interface-modified random circuit breaker network model applicable to both bipolar and unipolar resistance switching," Appl. Phys. Lett., vol. 98, no. 3, pp. 033502.1-033502.3, Jan. 2011.
9 S. Yu, X. Guan, and H.-S. Philip Wong, "On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, Monte Carlo simulation, and experimental characterization," in IEDM Tech. Dig., 2011, pp. 17.3.1-17.3.4.
10 R. Bruchhaus, R. Muenstermann, T. Menke, C. Hermes, F. Lentz, R. Weng, R. Dittmann, R. Waser, "Bipolar resistive switching in oxides: mechanisms and scaling," Curr. Appl. Phys., vol. 11, no. 2, pp. 75-78, Feb. 2011.   DOI
11 ATLAS User's Manual, SILVACO, Santa Clara, CA, 2010.
12 B. J. Choi, S. Choi, K. M. Kim, Y. C. Shin, C. S. Hwang, S.-Y. Hwang, S.-S. Cho, S. Park, and S.-K. Hong, "Study on the resistive switching time of $TiO_2$ thin films," Appl. Phys. Lett., vol. 89, no. 1, pp. 012906.1-012906.3, Jul. 2006.
13 N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu, "Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories," Appl. Phys. Lett., vol. 92, no. 23, pp. 232112.1-232112.3, Jun. 2008.
14 U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, "Self-accelerated thermal-dissolution model for reset programming in unipolar resistive switching memory (RRAM) devices," IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 193-200, Feb. 2009.   DOI
15 S. Yu, and H.-S. Philip Wong, "A phenomenological model for the reset mechanism of metal oxide RRAM," IEEE Electron Device Lett., vol. 31, no. 12, pp. 1455-1457, Dec. 2010.   DOI   ScienceOn
16 M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K, Yoo, and K. Kim, "A fast, highendurance and scalable non-volatile memory device made from asymmetric $Ta_2O_{5-x}/TaO_{2-x}$ bilayer structures," Nat. Mater., vol. 10, no. 8, pp. 625-630, Aug. 2011.   DOI   ScienceOn
17 I. G. Baek, D. C. Kim, M. J. Lee, H.-J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U.-I. Chung, J. T. Moon, and B. I. Ryu, "Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application," in IEDM Tech. Dig., 2005, pp. 750-753.
18 S. Jung, M. Siddik, W. Lee, J. Park, X. Liu, J. Woo, G. Choi, J. Lee, Nodo Lee, Y. H. Jang, and H. Hwang, "Thermally-assisted $Ti/Pr_{0.7}Ca_{0.3}MnO_3$ ReRAM with excellent switching speed and retention characteristics," in IEDM Tech. Dig., 2011, pp. 3.6.1-3.6.4.
19 K. S. Lee, J.-S. Jang, Y. Kwon, K.-H. Lee, Y.-K. Park, and W. Y. Choi, "A unified model for unipolar resistive random access memory," Appl. Phys. Lett., vol. 100, no. 8, pp. 083509.1-083509.3, Feb. 2012.