Browse > Article
http://dx.doi.org/10.5573/JSTS.2012.12.3.255

A 15-GHz CMOS Multiphase Rotary Traveling-Wave Voltage-Controlled Oscillator  

Zhang, Changchun (Southeast University)
Wang, Zhigong (Southeast University)
Zhao, Yan (Southeast University)
Park, Sung-Min (Ewha Womans University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.12, no.3, 2012 , pp. 255-265 More about this Journal
Abstract
This paper presents a 15-GHz multiphase rotary traveling-wave voltage-controlled oscillator (RTW VCO) where a shielded coplanar stripline (CPS) is exploited to provide better shielding protection and lower phase noise at a moderate cost of characteristic impedance and power consumption. Test chips were implemented in a standard 90-nm CMOS process, demonstrating the measured results of 2-GHz frequency tuning range, -11.3-dBm output power, -109.6-dBc/Hz phase noise at 1-MHz offset, and 2-ps RMS clock jitter at 15 GHz. The chip core occupies the area of $0.2mm^2$ and dissipates 12 mW from a single 1.2-V supply.
Keywords
CMOS; shielded coplanar stripline; phase noise; rotary traveling-wave; VCO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. L. Jang, C. C. Liu, M. H. Suchen, et al., "An eight-phase CMOS voltage controlled oscillator," Microwave and Optical Tech. Lett., Vol. 51, No. 5, pp. 1225-1228, May 2009.   DOI   ScienceOn
2 T. Shibasaki, et al., "18-GHz clock distribution using a coupled VCO array," IEICE Trans. Electron., Vol. E90-C, No. 4, pp. 811-823, Apr. 2007.   DOI
3 J. C. Chien, and L. H. Lu, "A 32-GHz rotary traveling-wave voltage controlled oscillator in 0.18-${\mu}m$ CMOS," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 10, pp. 724-726, Oct. 2007.   DOI   ScienceOn
4 A. Hajimiri and T. H. Lee, "Design issues in CMOS differential LC oscillators," IEEE J. of Solid-State Circuits, pp. 717-724, May 1999.
5 T. Lagutere, J. M. Pailot, and H. Guegnaud, "Method to design low noise differential CMOS VCOs without tail current source", Int. J. of Electronics and Comm., Vol. 60, No. 2, pp. 172-178, 2006.   DOI   ScienceOn
6 S. Levantino et al., "Frequency dependence on bias current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion," IEEE J. of Solid-State Circuits, Vol. 37, No. 8, pp. 1003-1011, Aug. 2002.   DOI   ScienceOn
7 E. Hegazi, H. Sjoland, and A. A. Abidi, "A filtering technique to lower LC oscillator phase noise", IEEE J. of Solid-State Circuits, Vol. 36, No. 12, pp. 1921-2930, Dec. 2001.   DOI   ScienceOn
8 A. Jeng and C. G. Sodini, "The impact of device type and sizing on phase noise mechanism", IEEE J. of Solid-State Circuits, Vol. 40, No. 2, pp. 360-369, Feb. 2005.   DOI   ScienceOn
9 B. Soltanian and P. Kinget, "AM-FM conversion by the active devices in MOS LC-VCOs and its effect on the optimal amplitude", IEEE RFIC Symp., pp. 104-108, 2006.
10 O. Casha, I. Grech, J. Micallef, and E. Gatt, "Design considerations and device selection in the implementation of low phase noise LC-VCOs," IEEE ISCAS, pp. 376-379, May, 2005.
11 H. Wu, and A. Hajimiri, "Silicon-based distributed voltage-controlled oscillators," IEEE J. of Solid-State Circuits, Vol. 36, No. 3, pp. 493-502, Mar. 2001.   DOI   ScienceOn
12 P. Andreani, and S. Mattisson, "On the use of MOS varactors in RF VCO's," IEEE J. of Solid-State Circuits, Vol. 35, No. 6, pp. 905-910, Jun. 2000.   DOI   ScienceOn
13 G. Le Grand de Mercey, "18GHz-36GHz rotary traveling wave voltage controlled oscillator in a CMOS technology", Ph.D. dissertation, Dept. Inform. Tech., Univ. Bundeswehr, Munich, Germany, Aug. 2004.
14 H. H. Hsieh, Y. C. Hsu, and L. H. Lu, "A 15/30-GHz dual-band multiphase voltage controlled oscillator in 0.18-${\mu}m$ CMOS", IEEE Trans. on Microwave Theory and Technique, Vol. 55, No. 33, pp. 474-483, Mar. 2007.   DOI   ScienceOn
15 N. Tzartzanis and W. W. Walker, "A reversible poly-phase distributed VCO", IEEE Tech. Digest of ISSCC, pp. 596-597, Feb. 2006.
16 R. E. Collin, 'Foundations for Microwave Engineering', 2nd Ed., Jonn Wilely&Sons, NJ, 2001.
17 Z. T. Yu and X. Liu, "Low-power rotary clock array design", IEEE Trans. on VLSI Systems, Vol.15, No. 1, pp. 5-12, Jan. 2007.   DOI   ScienceOn
18 D. Ham and A. Hajimiri, "Virtual damping and einstein relation in oscillators," IEEE J. of Solid State Circuits, Vol. 38, No. 3, pp. 407-418, Mar. 2003.   DOI   ScienceOn
19 F. B. Abdeljelil, W. Tatinian, L. Carpineto, and G. Jacquemod, "Design of a CMOS 12 GHz rotary traveling wave oscillator with switched capacitor tuning," IEEE RFIC Symp., pp. 579-582, 2009.
20 N. Nedovic et al., "A 40-44 Gb/s 3${\times}$oversampling CMOS CDR/1:16 DEMUX," IEEE J. of Solid- State Circuits, Vol. 42, No. 12, pp. 2726-2735, Dec. 2007.   DOI   ScienceOn
21 D. Axelrad et al., "A multi-phase 10GHz VCO in CMOS/SOI for 40Gbit/s SONET OC-768 clock and data recovery circuits", IEEE RFIC Symp., pp. 573-576, 2005.
22 J. Lee and B. Razavi, "A 40-Gb/s clock and data recovery circuit in 0.18-${\mu}m$ CMOS technology," IEEE J. of Solid-State Circuits, Vol. 38, No. 12, pp. 2181-2190, Dec. 2003.   DOI   ScienceOn
23 J. Wood, T. C. Edwards, and S. Lipa, "Rotary traveling-wave oscillator arrays: A new clock technology", IEEE J. of Solid-State Circuits, Vol. 36, No. 11, pp. 1654-1665, Nov. 2001.   DOI   ScienceOn
24 W. F. Andress, and D. Ham, "Recent developments in standing-wave oscillator design: Review," IEEE RFIC Symp., pp. 119-122, 2004.