Browse > Article

Beyond-CMOS: Impact of Side-Recess Spacing on the Logic Performance of 50 nm $In_{0.7}Ga_{0.3}As$ HEMTs  

Kim, Dae-Hyun (Microsystems Technology Laboratory (MTL), Massachusetts Institute of Technology (MIT))
del Alamo, Jesus A. (Microsystems Technology Laboratory (MTL), Massachusetts Institute of Technology (MIT))
Lee, Jae-Hak (Seoul National University)
Seo, Kwang-Seok (Seoul National University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.6, no.3, 2006 , pp. 146-153 More about this Journal
Abstract
We have been investigating InGaAs HEMTs as a future high-speed and low-power logic technology for beyond CMOS applications. In this work, we have experimentally studied the role of the side-recess spacing $(L_{side})$ on the logic performance of 50 nm $In_{0.7}Ga_{0.3}As$ As HEMTs. We have found that $L_{side}$ has a large influence on the electrostatic integrity (or short channel effects), gate leakage current, gate-drain capacitance, and source and drain resistance of the device. For our device design, an optimum value of $L_{side}$ of 150 nm is found. 50 nm $In_{0.7}Ga_{0.3}As$ HEMTs with this value of $L_{side}$ exhibit $I_{ON}/I_{OFF}$ ratios in excess of $10^4$, subthreshold slopes smaller than 90 mV/dec, and logic gate delays of about 1.3 ps at a $V_{CC}$ of 0.5 V. In spite of the fact that these devices are not optimized for logic, these values are comparable to state-of-the-art MOSFETs with similar gate lengths. Our work confirms that in the landscape of alternatives for beyond CMOS technologies, InAs-rich InGaAs FETs hold considerable promise.
Keywords
HEMT; $In_{0.7}Ga_{0.3}As$; side-recess spacing; subthreshold-slope; DIBL; $I_{ON}/I_{OFF}$; gate delay;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, '30-nm Two-Step Recess Gate InP-Based InAlAs/InGaAs HEMTs', IEEE Tran. Electron Devices, Vol. 49, No. 10, pp. 1694-1700, 2002   DOI   ScienceOn
2 D.-H. Kim, J. A. del Alamo, J.-H. Lee, and K.-S. Seo, 'The Impact of Side-Recess Spacing on the Logic Performance of 50 nm $In_{0.7}Ga_{0.3}As$ HEMTs', in $18^{th}$ IEEE Indium Phosphide and Related Materials Conference (IPRM), pp. 177-180, May 2006
3 T. Suemitsu, H. Yokoyama, Y. Umeda, T. Enoki, and Y. Ishii, 'High-Performance $0.1-{\mu}m$ Gate Enhancement-Mode InAlAs/InGaAs HEMT's Using Two-Step Recessed Gate Technology', IEEE Tran. Electron Devices, Vol. 46, No. 6, pp. 1074-1080, 1999   DOI   ScienceOn
4 M. Radosavljevic, S. Heinze, J. Tersoff, and P. Avouris, 'Drain voltage scaling in carbon nanotube transistors', Appl. Phys. Lett., Vol. 83, pp. 2435-2437, 2003   DOI   ScienceOn
5 K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K. Hikosaka, T. Mimura, S. Hiyamizu, T. Matsui, 'Nanogate InP-HEMT Technology for Ultrahigh-Speed Performance', in $16^{th}$ IEEE Indium Phosphide and Related Materials Conference (IPRM), pp. 721-726, May 2004   DOI
6 C. W. Pobanz, M. Matloubian, M. Lui, H.-C. Sun, M. Case, C. M. Ngo, P. Janke, T. Gaier, and L. Samoska, 'A High-Gain Monolithic D-Band InP HEMT Amplifier', IEEE Journal of Solid-State Circuits, Vol. 34, No. 9, pp. 1219-1224, 1999   DOI   ScienceOn
7 K. Murata, K. Sano, H. Kitabayashi, S. Sugitani, H. Sugahara, and T. Enoki, '100-Gb/s Multiplexing and Demultiplexing IC Operations in InP HEMT Technology', IEEE Journal of Solid-State Circuits, Vol. 39, No. 1, pp. 207-213, 2004   DOI   ScienceOn
8 D. Streit, R. Lai, A. Oki, and A. Gutierrez-Aitken, 'InP HEMT and HBT Applications Beyond 200 GHz', in Proc. $14^{th}$ IEEE Indium Phosphide and Related Material Conference (IPRM), pp. 11-14, May 2002   DOI
9 Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, and S. Hiyamizu, 'Pseudomorphic $In_{0.52}Al_{0.48}As/In_{0.7}Ga_{0.3}As$ HEMTs With an Ultrahigh $f_T$ of 562 GHz', IEEE Electron Device Letters, Vol. 23, No. 10, pp. 573-575, 2002   DOI   ScienceOn
10 L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, 'Epitaxial core-shell and core-multishell nanowire heterostructures', Nature, Vol. 420, pp. 57-61, 2002   DOI   ScienceOn
11 S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, 'Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes', Appl. Phys. Lett., Vol. 80, pp. 3817-3819, 2002   DOI   ScienceOn
12 G. E. Moore, 'Cramming more components onto integrated circuits', Electronics, Vol. 38, No. 8, pp. 114-117, April 19, 1965
13 D. R. Greenberg and Jesus A. del Alamo, 'Nonlinear Source and Drain Resistance in Recessed-Gate Heterostructure Field-Effect Transistors', IEEE Tran. Electron Devices, Vol. 43, No. 8, pp. 1304-1306, 1996   DOI   ScienceOn
14 D.-H. Kim, J. A. del Alamo, J.-H. Lee, and K.-S. Seo, 'Performance Evaluation of 50 nm $In_{0.7}Ga_{0.3}As$ HEMTs For Beyond-CMOS Logic Applications', in Int. Electron Devices Meeting Tech. Dig., pp. 455-458, December 2005
15 S. Thompson, N. Anand, M. Armstrong, C. Auth, B. Arcot, M. Alavi, P. Bai, J. Bielefeld, R. Bigwood, J. Brandenburg, M. Buehler, S. Cea, V. Chikarmane, C. Choi, R. Frankovic, T. Ghani, G. Glass, W. Han, T. Hoffmann, M. Hussein, P. Jacob, A. Jain, C. Jan, S. Joshi, C. Kenyon, J. Klaus, S. Klopcic, J. Luce, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, P. Nguyen, H. Pearson, T. Sandford, R. Schweinfurth, R. Shaheed, S. Sivakumar, M. Taylor, B. Tufts, C. Wallace, P. Wang, C. Weber, M. Bohr, 'A 90 nm Logic Technology Featuring 50 nm Strained Silicon Channel Transistors, 7 layers of Cu Interconnects, Low k ILD, and 1 ${\mu}m^2$ SRAM Cell', in Int. Electron Devices Meeting Tech. Dig., pp. 61-64, December 2002   DOI
16 M. T. Bohr, 'Nanotechnology Goals and Challenges for Electronic Applications', IEEE Trans. Nanotechnology, Vol. 1, No. 1., pp. 56-62, 2002   DOI
17 R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, 'Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications', IEEE Trans. Nanotechnology, Vol. 4, No. 2, pp. 153-158, 2005   DOI   ScienceOn