Browse > Article

Characteristics of Sucrose Thermal Degradation with High Temperature and High Pressure Treatment  

Woo, Koan-Sik (National Institute of Crop Science, Rural Development Administration)
Hwang, In-Guk (Department of Food Science and Technology, Chungbuk National University)
Lee, Youn-Ri (Department of Food Science and Technology, Chungbuk National University)
Lee, Jun-Soo (Department of Food Science and Technology, Chungbuk National University)
Jeong, Heon-Sang (Department of Food Science and Technology, Chungbuk National University)
Publication Information
Food Science and Biotechnology / v.18, no.3, 2009 , pp. 717-723 More about this Journal
Abstract
Thermal degradation characteristics of sucrose was investigated. A 20% sucrose solution was heated to temperatures of $110-150^{\circ}C$ for 1-5 hr. Chromaticity, pH, organic acids, 5-hydroxymethylfurfural (HMF), free sugars, electron donating ability (EDA), and ascorbic acid equivalent antioxidant capacity (AEAC) of the heated sucrose solutions were evaluated. With increasing temperatures and times, the L-, a-, and b-values decreased; however, total color difference (${\Delta}E_{ab}$) increased. The pH and sucrose contents decreased, and fructose and glucose contents increased with increasing heating temperature and time. Organic acids, such as formic acid, lactic acid, and levulinic acid, and HMF contents increased with increasing heating temperatures and times. EDA (%) and the AEAC of the heated sucrose solutions increased with increasing heating temperature and time. The heated sucrose solution was more effective than unheated sucrose solution, having higher EDA (90 fold), and AEAC (13 fold).
Keywords
sucrose thermal degradation; electron donating ability (EDA); 5-hydroxymethylfurfural (HMF); heating temperature and time; organic acid;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Imming R, Buczys R, Lehnberger A, Bliesener KM. A new approach to the kinetics of colour formation in concentrated carbohydrate solutions. Starch/Starke 48: 163-166 (1996)   DOI   ScienceOn
2 Schoebel T, Tannenbaum SR, Labuza TP. Reaction at limited water concentration-1. Sucrose hydrolysis. J. Food Sci. 34: 324-329 (1969)   DOI
3 Karel M, Labuza TP. Nonenzymatic browning in model systems containing sucrose. J. Agr. Food Chem. 16: 717-719 (1968)   DOI
4 Kwon OC, Woo KS, Kim TM, Kim DJ, Hong JT, Jeong HS. Physicochemical characteristics of garlic (Allium sativum L.) on the high temperature and pressure treatment. Korean J. Food Sci. Technol. 38: 331-336 (2006)   과학기술학회마을
5 Lee YR, Hwang IG, Woo KS, Kim DJ, Hong JT, Jeong HS. Antioxidative activities of the ethyl acetate fraction from heated onion (Allium cepa). Food Sci. Biotechnol. 16: 1041-1045 (2007)   과학기술학회마을
6 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice EC. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999)   DOI   ScienceOn
7 Leong LP, Shui G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 76: 69-75 (2002)   DOI   ScienceOn
8 Aida TM, Tajima K, Watanabe M, Saito Y, Kuroda K, Nonaka T, Hattori H, Smith Jr RL, Arai K. Reactions of D-fructose in water at temperatures up to 400${^{\circ}C}$ and pressures up to 100 MPa. J. Supercrit. Fluid 42: 110-119 (2007)   DOI   ScienceOn
9 Choi Y, Lee SM, Chun J, Lee HB, Lee J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of shiitake (Lentinus edodes) mushroom. Food Chem. 99: 381-387 (2006)   DOI   ScienceOn
10 Quintas MAC, Brandao TRS, Silva CLM. Modelling autocatalytic behaviour of a food model system-sucrose thermal degradation at high concentrations. J. Food Eng. 78: 537-545 (2007)   DOI   ScienceOn
11 Yilmaz Y, Toledo R. Antioxidant activity of water-soluble Maillard reaction products. Food Chem. 93: 273-278 (2005)   DOI   ScienceOn
12 Kim HJ, Taub IA. Intrinsic chemical markers for aseptic processing of particulate foods. Food Technol. -Chicago 47: 91-97 (1993)
13 Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agr. Food Chem. 50: 3010-3014 (2002)   DOI   ScienceOn
14 Baisier WM, Labuza TP. Maillard browning kinetics in a liquid model system. J. Agr. Food Chem. 40: 707-713 (1992)   DOI
15 Bachmann S, Meier M, Kanzig A. 5-Hydroxymethyl-2-furfural (HMF) in Lebensmitteln. Lebensmit Telchemie 51: 49-50 (1997)   ScienceOn
16 Clarke MA, Edye LA, Eggleston G. Sucrose decomposition in aqueous solution and losses in sugar manufacture and refining. Adv. Carbohyd. Chem. Bi. 52: 441-470 (1997)   DOI   ScienceOn
17 Tepe B, Sokmen M, Akpulat HA, Sokmen A. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem. 95: 200-204 (2006)   DOI   ScienceOn
18 Eggleston G. Deterioration of cane juice-sources and indicators. Food Chem. 78: 95-103 (2002)   DOI   ScienceOn
19 Woo KS, Hwang IG, Kim TM, Kim DJ, Hong JT, Jeong HS. Changes in the antioxidant activity of onion (Allium cepa) extracts with heat treatment. Food Sci. Biotechnol. 16: 828-831 (2007)   과학기술학회마을
20 Kim MJ, Kim CY, Park I. Prevention of enzymatic browning of pear by onion extract. Food Chem. 89: 181-184 (2005)   DOI   ScienceOn
21 Hwang IG, Woo KS, Kim TM, Kim DJ, Yang MH, Jeong HS. Changes of physicochemical characteristics of Korean pear (Pyrus pyrifolia Nakai) juice with heat treatment conditions. Korean J. Food Sci. Technol. 38: 342-347 (2006)
22 Shaw PE, Tatum JH, Berry RE. 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, a degradation product of a hexose. Carbohyd. Res. 16: 207-211 (1971)   DOI   ScienceOn
23 Lansalot MC, Moreau C. Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal. Commun. 4: 517-520 (2003)   DOI   ScienceOn
24 Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Tech. 11: 340-346 (2001)   DOI   ScienceOn
25 van Boekel MAJS. Kinetic aspects of the Maillard reaction: A critical review. Nahrung 45: 150-159 (2001)   DOI   ScienceOn
26 Haghighat KS, Kimura Y, Oomori T, Matsuno R, Adachi S. Kinetics on sucrose decomposition in subcritical water. LWT-Food Sci. Technol. 38: 297-302 (2005)   DOI   ScienceOn
27 Buera MP, Chirifie J, Resnik SL, Wetzler G. Nonenzymatic browning in liquid model systems of high water activity: Kinetics of color changes due to Maillard's reaction between different single sugars and glycine and comparison with caramelization browning. J. Food Sci. 52: 1063-1066 (1987)   DOI
28 Yen GC, Hsieh PP. Antioxidantive activity and scavenging effects on active oxygen of xylose-lysine maillard reaction products. J. Sci. Food Agr. 67: 415-420 (1995)   DOI   ScienceOn
29 Aida TM, Saito Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K. Dehydration of D-glucose in high temperature water at pressures up to 80 MPa. J. Supercrit. Fluid 40: 381-388 (2007)   DOI   ScienceOn
30 Osada Y, Shibamoto T. Antioxidative activity of volatile extracts from Maillard model systems. Food Chem. 98: 22-28 (2006)   DOI   ScienceOn
31 Schultheiss J, Jensen D, Galensa R. Hydroxymethylfurfural und furfural in kaffeeproben: HPLC-biosensor-kopplung mit supressionstechnik. Lebensmit Telchemie 53: 159 (1999)
32 BeMiller JN, Whistler RL. Carbohydrates. pp. 157-224. In: Food Chemistry. Fennema OR (ed). 3rd ed. Marcel Dekker, Inc. New York, NY, USA (1996)
33 Eggleston G, Vercellotti JR. Degradation of sucrose, glucose, and fructose in concentrated aqueous solutions under constant pH conditions at elevated temperature. J. Carbohyd. Chem. 19: 1305-1318 (2000)   DOI   ScienceOn
34 Labuza TP, Tannenbaum SR, Karel M. Water content and stability of low moisture and intermediate-moisture foods. Food Technol. -Chicago 24: 543-548 (1970)
35 Lowary TL, Richards GN. Effects of impurities on hydrolysis of sucrose in concentrated aqueous solutions. Int. Sugar J. 90: 164-167 (1988)
36 Tosi E, Ciappini M, Re E, Lucero H. Honey thermal treatment effects on hydroxymethylfurfural content. Food Chem. 77: 71-74 (2002)   DOI   ScienceOn
37 Yang SJ, Woo KS, Yoo JS, Kang TS, Noh YH, Lee J, Jeong HS. Change of Korean ginseng components with high temperature and pressure treatment. Korean J. Food Sci. Technol. 38: 521-525 (2006)   과학기술학회마을
38 Quintas MAC, Guimaraes C, Baylina J, Brandao TRS, Silva CLM. Multiresponse modelling of the caramelisation reaction. Innov. Food Sci. Emerg. 8: 306-315 (2007)   DOI   ScienceOn
39 Sturm K, Koron D, Stampar F. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem. 83: 417-422 (2003)   DOI   ScienceOn
40 Antal MJ, Mok WSL, Richards GN. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. Carbohyd. Res. 199: 91-109 (1990)   DOI   ScienceOn
41 Woo KS, Yoon HS, Lee YR, Lee J, Kim DJ, Hong JT, Jeong HS. Characteristics and antioxidative activity of volatile compounds in heated garlic (Allium sativum). Food Sci. Biotechnol. 16: 822-827 (2007)   과학기술학회마을
42 Eggleston G, Trask-Morrel B, Vercellotti JR. Use of differential scanning calorimetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose-salt residues. J. Agr. Food Chem. 44: 3319-3325 (1996)   DOI   ScienceOn
43 Hwang IG, Woo KS, Kim DJ, Hong JT, Hwang BY, Lee YR, Jeong HS. Isolation and identification of an antioxidant substance from heated garlic (Allium sativum L.). Food Sci. Biotechnol. 16: 963- 966 (2007)   과학기술학회마을