Browse > Article
http://dx.doi.org/10.4142/jvs.22196

Comparison of blood electrolyte and biochemical parameters between single infections of rotavirus and Cryptosporidium parvum in diarrheic Hanwoo calves  

Seungmin, Ha (National Institute of Animal Science, Rural Development Administration)
Seogjin, Kang (National Institute of Animal Science, Rural Development Administration)
Kwang-Man, Park (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk National University)
Ji-Yeong, Ku (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk National University)
Kyoung-Seong, Choi (Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University)
Jinho, Park (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk National University)
Publication Information
Journal of Veterinary Science / v.23, no.6, 2022 , pp. 85.1-85.11 More about this Journal
Abstract
Background: Neonatal calf diarrhea is a major problem in the cattle industry worldwide. Rotavirus and Cryptosporidium parvum are the primary causative agents, especially during the first three weeks of the calf's life. Objectives: This study investigated the differences in acid-base, electrolytes, and biochemical parameters of diarrheic calves with infection of either rotavirus or C. parvum. Methods: A total of 61 Korean native calves (≤ 20 days old) were divided into two groups based on rotavirus or C. parvum infections: rotavirus infection (n = 44) and C. parvum infection (n = 17). The calves with at a specific blood pH range (pH 6.92-7.25) were chosen for comparison. The acid-base, electrolyte, chemistry, and serum proteins were analyzed, Further, fecal examinations were performed. Results: Compared to C. parvum-infected calves, the rotavirus-infected calves showed lower levels of total carbon dioxide, bicarbonate (HCO3-), anion gap, total protein, and albumin/globulin ratio, and significantly lower levels of potassium, globulin, and α2-globulin (p < 0.05). The C. parvum-infected calves (r = 0.749) had stronger correlations between pH and HCO3- than the rotavirus-infected calves (r = 0.598). Compared to rotavirus-infected calves, strong correlations between globulin and α2-globulin, α2-globulin and haptoglobin were identified in C. parvum-infected calves. Conclusions: This study is the first to investigate acid-base, electrolyte, and biochemical parameters in calves in response to infections of rotavirus and C. parvum. Although rotavirus and C. parvum cause malabsorptive and secretory diarrhea in similar-aged calves, blood parameters were different. This would help establish the diagnostic and treatment strategies.
Keywords
Diarrhea; electrolyte; serum protein; rotavirus; Cryptosporidium parvum;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lundgren O, Svensson L. Pathogenesis of rotavirus diarrhea. Microbes Infect. 2001;3(13):1145-1156.   DOI
2 Gookin JL, Nordone SK, Argenzio RA. Host responses to Cryptosporidium infection. J Vet Intern Med. 2002;16(1):12-21.
3 Cunningham JG, Klein BG. Cunningham's Textbook of Veterinary Physiology. 5th ed. St. Louis: Elsevier Health Sciences; 2013.
4 Hodges R. Cryptosporidiosis in calves. J Clin Immunol. 2002;124(6):1152-1160.
5 Harmon DL. Understanding starch utilization in the small intestine of cattle. Asian-Australas J Anim Sci. 2009;22(7):915-922.   DOI
6 Shirazi-Beechey S, Wood IS, Dyer J, Scott D, King TP. Intestinal sugar transport in ruminants. In: Engelhardt WV, Leonhard S, Breves G, Giesecke D, editors. Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. Stuttgart: Ferdinand Enke Verlag; 1995, 117-133.
7 Reece WO, Erickson HH, Goff JP, Uemura EE. Dukes' Physiology of Domestic Animals. 13th ed. Ames: John Wiley & Sons; 2015.
8 Davidson GP, Gall DG, Petric M, Butler DG, Hamilton JR. Human rotavirus enteritis induced in conventional piglets. Intestinal structure and transport. J Clin Invest. 1977;60(6):1402-1409.   DOI
9 Collins J, Starkey WG, Wallis TS, Clarke GJ, Worton KJ, Spencer AJ, et al. Intestinal enzyme profiles in normal and rotavirus-infected mice. J Pediatr Gastroenterol Nutr. 1988;7(2):264-272.   DOI
10 Brunet JP, Cotte-Laffitte J, Linxe C, Quero AM, Geniteau-Legendre M, Servin A. Rotavirus infection induces an increase in intracellular calcium concentration in human intestinal epithelial cells: role in microvillar actin alteration. J Virol. 2000;74(5):2323-2332.   DOI
11 Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirus infection. Nat Rev Dis Primers. 2017;3(1):17083.
12 Lewis LD, Phillips RW. Water and electrolyte losses in neonatal calves with acute diarrhea. A complete balance study. Cornell Vet. 1972;62(4):596-607.
13 Sweeney RW. Treatment of potassium balance disorders. Vet Clin North Am Food Anim Pract. 1999;15(3):609-617.   DOI
14 Woodard JP, Chen W, Keku EO, Liu SC, Lecce JG, Rhoads JM. Altered jejunal potassium (Rb+) transport in piglet rotavirus enteritis. Am J Physiol. 1993;265(2 Pt 1):G388-G393.
15 Rerksuppaphol S, Rerksuppaphol L. Prevalence and clinical manifestations of rotavirus diarrhea in children of rural area of Thailand. Int J Collab Res Intern Med Public Health. 2011;3(9):695-702.
16 Barger AM, MacNeill AL. 2015. Clinical Pathology and Laboratory Techniques for Veterinary Technicians. John Wiley & Sons.
17 Thrall MA, Weiser G, Allison RW, Campbell TW. Veterinary Hematology and Clinical Chemistry. Ames: John Wiley & Sons; 2012.
18 Lim S. Approach to hypokalemia. Acta Med Indones. 2007;39(1):56-64.
19 Tothova C, Mihajlovicova X, Nagy O. The use of serum proteins in the laboratory diagnosis of health disorders in ruminants. In: Abubakar M, Iqbal A, Kabir A, Manzoor S, editors. Ruminants - The Husbandry, Economic and Health Aspects. London: IntechOpen Ltd.; 2018, 105-146.
20 Ulutas B, Tan T, Ulutas PA, Bayramli G. Haptoglobin and serum amyloid A responses in cattle persistently infected with bovine viral diarrhea virus. Acta Sci Vet. 2011;39(3):973.
21 Todd CG, Millman ST, McKnight DR, Duffield TF, Leslie KE. Nonsteroidal anti-inflammatory drug therapy for neonatal calf diarrhea complex: effects on calf performance. J Anim Sci. 2010;88(6):2019-2028.   DOI
22 Cho YI, Yoon KJ. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J Vet Sci. 2014;15(1):1-17.   DOI
23 Meganck V, Hoflack G, Piepers S, Opsomer G. Evaluation of a protocol to reduce the incidence of neonatal calf diarrhoea on dairy herds. Prev Vet Med. 2015;118(1):64-70.   DOI
24 Saif L, Rosen B, Parwani A. Bovine rotavirus. In: Diagnostic Veterinary Virology: A Practitioner's Guide. Baltimore: Williams and Wilkins; 1991, 126-130.
25 Silverlas C, Bosaeus-Reineck H, Naslund K, Bjorkman C. Is there a need for improved Cryptosporidium diagnostics in Swedish calves? Int J Parasitol. 2013;43(2):155-161.   DOI
26 Foster DM, Smith GW. Pathophysiology of diarrhea in calves. Vet Clin North Am Food Anim Pract. 2009;25(1):13-36.   DOI
27 Laurent F, McCole D, Eckmann L, Kagnoff MF. Pathogenesis of Cryptosporidium parvum infection. Microbes Infect. 1999;1(2):141-148.
28 Estes MK, Atmar RL. Viral pathogens of the intestine. In: Hecht GA, editor. Microbial Pathogenesis and the Intestinal Epithelial Cell. Hoboken: ASM Press; 2003, 525-545.
29 Ramig RF. Pathogenesis of intestinal and systemic rotavirus infection. J Virol. 2004;78(19):10213-10220.   DOI
30 Enemark HL, Bille-Hansen V, Lind P, Heegaard PM, Vigre H, Ahrens P, et al. Pathogenicity of Cryptosporidium parvum--evaluation of an animal infection model. Vet Parasitol. 2003;113(1):35-57.   DOI
31 Lee SH, Choi EW, Kim D. Relationship between the values of blood parameters and physical status in Korean native calves with diarrhea. J Vet Sci. 2020;21(2):e17.
32 Latimer KS. Duncan and Prasse's Veterinary Laboratory Medicine: Clinical Pathology. Hoboken: John Wiley & Sons; 2011.
33 Tirziu E. Acute-phase proteins in immune response. Lucrari Stiinlifice Medicina Veterinara. 2009;42(1):329-339.
34 Choi KS, Kang JH, Cho HC, Yu DH, Park J. Changes in serum protein electrophoresis profiles and acute phase proteins in calves with diarrhea. Can J Vet Res. 2021;85(1):45-50.
35 Cho YI, Kim WI, Liu S, Kinyon JM, Yoon KJ. Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces. J Vet Diagn Invest. 2010;22(4):509-517.
36 Mahlum CE, Haugerud S, Shivers JL, Rossow KD, Goyal SM, Collins JE, et al. Detection of bovine viral diarrhea virus by TaqMan reverse transcription polymerase chain reaction. J Vet Diagn Invest. 2002;14(2):120-125.   DOI
37 Heller MC, Chigerwe M. Diagnosis and treatment of infectious enteritis in neonatal and juvenile ruminants. Vet Clin North Am Food Anim Pract. 2018;34(1):101-117.   DOI
38 Sayers RG, Kennedy A, Krump L, Sayers GP, Kennedy E. An observational study using blood gas analysis to assess neonatal calf diarrhea and subsequent recovery with a European Commission-compliant oral electrolyte solution. J Dairy Sci. 2016;99(6):4647-4655.   DOI
39 Wyatt CR, Riggs MW, Fayer R. Cryptosporidiosis in neonatal calves. Vet Clin North Am Food Anim Pract. 2010;26(1):89-103.   DOI