Browse > Article
http://dx.doi.org/10.4142/jvs.22059

CT imaging features of fat stranding in cats and dogs with abdominal disorder  

Seolyn, Jang (Department of Veterinary Medical Imaging, College of Veterinary Medicine and BK 21 Plus Project Team, Chonnam National University)
Suhyun, Lee (Department of Veterinary Medical Imaging, College of Veterinary Medicine and BK 21 Plus Project Team, Chonnam National University)
Jihye, Choi (Department of Veterinary Medical Imaging, College of Veterinary Medicine, Seoul National University)
Publication Information
Journal of Veterinary Science / v.23, no.6, 2022 , pp. 70.1-70.13 More about this Journal
Abstract
Background: Fat stranding is a non-specific finding of an increased fat attenuation on computed tomography (CT) images. Fat stranding is used for detecting the underlying lesion in humans. Objectives: To assess the clinical significance of fat stranding on CT images for identifying the underlying cause in dogs and cats. Methods: In this retrospective study, the incidence, location, extent, distribution, and pattern of fat stranding were assessed on CT studies obtained from 134 cases. Results: Fat stranding was found in 38% (51/134) of all cases and in 35% (37/107) of tumors, which was significantly higher in malignant tumors (44%) than benign tumors (12%). Moreover, fat stranding was found in more than two areas in malignant tumors (16/33) and in a single area in benign tumors (4/4). In inflammation, fat stranding was demonstrated in 54% (7/13) in a single area (7/7) as a focal distribution (6/7). In trauma, fat stranding was revealed in 50% (7/14) and most were in multiple areas (6/7). Regardless of the etiologies, fat stranding was always around the underlying lesion and a reticular pattern was the most common presentation. Logistic regression analysis revealed that multiple areas (p = 0.040) of fat stranding and a reticulonodular pattern (p = 0.022) are the significant predictors of malignant tumor. Conclusions: These findings indicated that CT fat stranding can be used as a clue for identifying the underlying lesion and can be useful for narrowing the differential list based on the extent and pattern.
Keywords
CT; mesentery; omentum; reticular; reticulonodular pattern;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Djmel E, Jrad M, Ben Temellist L, Zrelly R, Mizouni H. The peritoneum: anatomy & pathological processes. In: Proceedings of European Congress of Radiology-ECR 2017; 2017 Mar 1-5; Vienna. Vienna: European Society of Radiology; 2017, C-1395.
2 Meza-Perez S, Randall TD. Immunological functions of the omemtum. Trends Immunol. 2017;38(7):526-536.   DOI
3 Mindelzun RE, Jeffrey RB Jr, Lane MJ, Silverman PM. The misty mesentery on CT: differential diagnosis. AJR Am J Roentgenol. 1996;167(1):61-65.   DOI
4 Healy JC, Reznek RH. The peritoneum, mesenteries and omenta: normal anatomy and pathological processes. Eur Radiol. 1998;8(6):886-900.   DOI
5 Doom M, de Rooster H, van Bergen T, Gielen I, Kromhout K, Simoens P, et al. Morphology of the canine omentum part 2: the omental bursa and its compartments materialized and explored by a novel technique. Anat Histol Embryol. 2016;45(1):28-36.   DOI
6 Doom M, de Rooster H, van Bergen T, Gielen I, Kromhout K, Simoens P, et al. Morphology of the canine omentum part 1: arterial landmarks that define the omentum. Anat Histol Embryol. 2016;45(1):37-43.   DOI
7 Coffey JC, O'Leary DP. The mesentery: structure, function, and role in disease. Lancet Gastroenterol Hepatol. 2016;1(3):238-247.   DOI
8 Mauad FM, Chagas-Neto FA, Benedeti AC, Nogueira-Barbosa MH, Muglia VF, Carneiro AA, et al. Reproducibility of abdominal fat assessment by ultrasound and computed tomography. Radiol Bras. 2017;50(3):141-147.   DOI
9 Chang J, Jung J, Lee H, Chang D, Yoon J, Choi M. Computed tomographic evaluation of abdominal fat in minipigs. J Vet Sci. 2011;12(1):91-94.   DOI
10 Seo IK, Kim BJ, Kim B, Choi CH, Kim JW, Kim JG, et al. Abdominal fat distribution measured using computed tomography is associated with an increased risk of colorectal adenoma in men. Medicine (Baltimore). 2017;96(37):e8051.
11 Fidler J, Paulson EK, Layfield L. CT evaluation of acute cholecystitis: findings and usefulness in diagnosis. AJR Am J Roentgenol. 1996;166(5):1085-1088.   DOI
12 Patel CM, Sahdev A, Reznek RH. CT, MRI and PET imaging in peritoneal malignancy. Cancer Imaging. 2011;11(1):123-139.   DOI
13 Pereira JM, Sirlin CB, Pinto PS, Jeffrey RB, Stella DL, Casola G. Disproportionate fat stranding: a helpful CT sign in patients with acute abdominal pain. Radiographics. 2004;24(3):703-715.   DOI
14 Morimoto T, Yamada T, Miyakawa K, Nakajima Y. Factors associated with pericolic fat stranding of colon cancer on computed tomography colonography. Acta Radiol Open. 2018;7(2):2058460118757578.
15 Turkvatan A, Erden A, Turkoglu MA, Secil M, Yener O. Imaging of acute pancreatitis and its complications. Part 1: acute pancreatitis. Diagn Interv Imaging. 2015;96(2):151-160.   DOI
16 O'Connor OJ, Buckley JM, Maher MM. Imaging of the complications of acute pancreatitis. AJR Am J Roentgenol. 2011;197(3):W375-81.   DOI
17 Garland J, Olds K, Tse R. Perinephric fat stranding on postmortem computed tomography scan in acute pyelonephritis: a case report. Am J Forensic Med Pathol. 2019;40(4):391-393.   DOI
18 Oei TN, Jagannathan JP, Ramaiya N, Ros PR. Peritoneal sarcomatosis versus peritoneal carcinomatosis: imaging findings at MDCT. AJR Am J Roentgenol. 2010;195(3):W229-35.   DOI
19 Sartelli M, Moore FA, Ansaloni L, Di Saverio S, Coccolini F, Griffiths EA, et al. A proposal for a CT driven classification of left colon acute diverticulitis. World J Emerg Surg. 2015;10:3.
20 Thornton E, Mendiratta-Lala M, Siewert B, Eisenberg RL. Patterns of fat stranding. AJR Am J Roentgenol. 2011;197(1):W1-14.   DOI
21 Filippone A, Cianci R, Delli Pizzi A, Esposito G, Pulsone P, Tavoletta A, et al. CT findings in acute peritonitis: a pattern-based approach. Diagn Interv Radiol. 2015;21(6):435-440.   DOI
22 Brink JA, Wagner BJ. Pathways for the spread of disease in the abdomen and pelvis. In: Hodler J, KubikHuch RA, von Schulthess GK, editors. Diseases of the Abdomen and Pelvis 2018-2021: Diagnostic Imaging. Wallisellen: IDKD Book; 2018, 57-65.
23 Iaselli F, Mazzei MA, Firetto C, D'Elia D, Squitieri NC, Biondetti PR, et al. Bowel and mesenteric injuries from blunt abdominal trauma: a review. Radiol Med (Torino). 2015;120(1):21-32.   DOI
24 Murakami R, Tajima H, Kumazaki T, Kobayashi Y. CT findings of mesenteric injury after blunt trauma. CMIG Extra Cases. 2004;28(2):11-14.   DOI
25 Lee SY, Kim DW, Cho JH, Kwon HJ, Ha DH, Oh JY. CT findings of benign omental lesions following abdominal cancer surgery. J Korean Soc Radiol. 2016;75(1):1-11.   DOI
26 Salama AA, Elbarbary AA, Aboryia MH. Diagnostic value of multidetector computed tomography in differentiation of benign and malignant omental lesions. Egypt J Radiol Nucl Med. 2015;46(2):305-314.   DOI
27 Skipworth RJ, Fearon KC. Acute abdomen: peritonitis. Surgery. 2005;23(6):204-207.   DOI
28 Broche F, Tellado JM. Defense mechanisms of the peritoneal cavity. Curr Opin Crit Care. 2001;7(2):105-116.   DOI
29 Tirkes T, Sandrasegaran K, Patel AA, Hollar MA, Tejada JG, Tann M, et al. Peritoneal and retroperitoneal anatomy and its relevance for cross-sectional imaging. Radiographics. 2012;32(2):437-451.   DOI
30 Kechagias A, Palomaki A, Dervenis C, Triantopoulou C. Pericolic or paracolic? The right word in the right place for acute diverticulitis. Eur Radiol. 2019;29(8):4377-4378.   DOI
31 Bonafe T, Nicola R, Kovacs J. Differential considerations for omental fat infiltration and thickening on CT. J Am Osteopath Coll Radiol. 2014;3(4):22-24.
32 Silverman PM, Baker ME, Cooper C, Kelvin FM. CT appearance of diffuse mesenteric edema. J Comput Assist Tomogr. 1986;10(1):67-70.
33 Seo BK, Ha HK, Kim AY, Kim TK, Kim MJ, Byun JH, et al. Segmental misty mesentery: analysis of CT features and primary causes. Radiology. 2003;226(1):86-94.   DOI