Browse > Article
http://dx.doi.org/10.4142/jvs.21062

Antimicrobial resistance studies in staphylococci and streptococci isolated from cows with mastitis in Argentina  

Elisa, Crespi (Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Catedra de Microbiologia)
Ana M., Pereyra (Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Catedra de Microbiologia)
Tomas, Puigdevall (Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Catedra de Microbiologia)
Maria V., Rumi (Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Catedra de Microbiologia)
María F., Testorelli (Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Catedra de Microbiologia)
Nicolas, Caggiano (Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Catedra de Fisiologia Animal)
Lucia, Gulone (Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Catedra de Microbiologia)
Marta, Mollerach (Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Catedra de Microbiologia)
Elida R., Gentilini (Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Catedra de Microbiologia)
Mariela E., Srednik (Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Catedra de Microbiologia)
Publication Information
Journal of Veterinary Science / v.23, no.6, 2022 , pp. 12.01-12.10 More about this Journal
Abstract
Background: Staphylococcus aureus and Streptococcus agalactiae are the main cause of clinical mastitis in dairy cattle in Argentina, whereas coagulase-negative staphylococci (CNS) and environmental streptococci are the main cause of subclinical mastitis. Bacteria isolated from infected animals show increasing antimicrobial resistance. Objectives: This study aims to determine the antimicrobial resistance of staphylococci and streptococci isolated from milk with mastitis, and to genotypically characterize the methicillin-resistant (MR) staphylococci. Methods: Isolation was performed on blood agar and identification was based on biochemical reactions. Antimicrobial susceptibility was according to the Clinical and Laboratory Standards Institute guidelines. The antimicrobial resistance genes, SCCmec type and spa type were detected by the polymerase chain reaction method. Results: We isolated a total of 185 staphylococci and 28 streptococci from 148 milk samples. Among the staphylococcal isolates, 154 were identified as CNS and 31 as S. aureus. Among the 154 CNS, 24.6% (n = 38) were resistant to penicillin, 14.9% (n = 23) to erythromycin, 17.5% (n = 27) to clindamycin, 6.5% (n = 10) to cefoxitin and oxacillin. Among the S. aureus isolates, 16.1% (n = 5) were resistant to penicillin, 3.2% (n = 1) to cefoxitin and oxacillin (MRSA). Six MR isolates (5 CNS and 1 MRSA) were positive to the mecA gene, and presented the SCCmec IVa. The MRSA strain presented the sequence type 83 and the spa type 002. Among the 28 streptococcal isolates, 14.3% (n = 4) were resistant to penicillin, 10.7% (n = 3) to erythromycin and 14.3% (n = 4) to clindamycin. Conclusions: The present findings of this study indicate a development of antimicrobial resistance in main bacteria isolated from cows with mastitis in Argentina.
Keywords
Bovine mastitis; antimicrobial resistance; staphylococci; streptococci; wmolecular typing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Raspanti CG, Bonetto CC, Vissio C, Pellegrino MS, Reinoso EB, Dieser SA, et al. Prevalence and antibiotic susceptibility of coagulase-negative Staphylococcus species from bovine subclinical mastitis in dairy herds in the central region of Argentina. Rev Argent Microbiol. 2016;48(1):50-56.     DOI
2 Tenhagen BA, Koster G, Wallmann J, Heuwieser W. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J Dairy Sci. 2006;89(7):2542-2551.     DOI
3 Keefe GP. Streptococcus agalactiae mastitis: a review. Can Vet J. 1997;38(7):429-437.
4 Ding Y, Zhao J, He X, Li M, Guan H, Zhang Z, et al. Antimicrobial resistance and virulence-related genes of Streptococcus obtained from dairy cows with mastitis in Inner Mongolia, China. Pharm Biol. 2016;54(1):162-167.     DOI
5 Tenhagen BA, Hansen I, Reinecke A, Heuwieser W. Prevalence of pathogens in milk samples of dairy cows with clinical mastitis and in heifers at first parturition. J Dairy Res. 2009;76(2):179-187.     DOI
6 Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control. 2006;34(5 Suppl 1):S3-S10.     DOI
7 Gentilini E, Denamiel G, Betancor A, Rebuelto M, Rodriguez Fermepin M, De Torrest RA. Antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine mastitis in Argentina. J Dairy Sci. 2002;85(8):1913-1917.     DOI
8 McDougall S. Efficacy of two antibiotic treatments in curing clinical and subclinical mastitis in lactating dairy cows. N Z Vet J. 1998;46(6):226-232.     DOI
9 Baig S, Johannesen TB, Overballe-Petersen S, Larsen J, Larsen AR, Stegger M. Novel SCCmec type XIII (9A) identified in an ST152 methicillin-resistant Staphylococcus aureus. Infect Genet Evol. 2018;61:74-76.     DOI
10 Petersen A, Stegger M, Heltberg O, Christensen J, Zeuthen A, Knudsen LK, et al. Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clin Microbiol Infect. 2013;19(1):E16-E22.     DOI
11 Srednik ME, Archambault M, Jacques M, Gentilini ER. Detection of a mecC-positive Staphylococcus saprophyticus from bovine mastitis in Argentina. J Glob Antimicrob Resist. 2017;10:261-263.     DOI
12 Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31(4):1-103.  
13 Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. Approved Standard Fourth Edition and supplement VET01-A4 and VET01-S2 (Replaces M31 A3). Wayne: Clinical Laboratory Standard Institute; 2013. 
14 Vannuffel P, Laterre PF, Bouyer M, Gigi J, Vandercam B, Reynaert M, et al. Rapid and specific molecular identification of methicillin-resistant Staphylococcus aureus in endotracheal aspirates from mechanically ventilated patients. J Clin Microbiol. 1998;36(8):2366-2368.     DOI
15 Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000;38(3):1008-1015.     DOI
16 Cuny C, Witte W. PCR for the identification of methicillin-resistant Staphylococcus aureus (MRSA) strains using a single primer pair specific for SCCmec elements and the neighbouring chromosome-borne orfX. Clin Microbiol Infect. 2005;11(10):834-837.     DOI
17 Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, Etienne J, et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother. 2007;51(1):264-274.     DOI
18 Milheirico C, Oliveira DC, de Lencastre H. Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: 'SCCmec IV multiplex'. J Antimicrob Chemother. 2007;60(1):42-48.     DOI
19 Harmsen D, Claus H, Witte W, Rothganger J, Claus H, Turnwald D, et al. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol. 2003;41(12):5442-5448.     DOI
20 Hallin M, Deplano A, Denis O, De Mendonca R, De Ryck R, Struelens MJ. Validation of pulsed-field gel electrophoresis and spa typing for long-term, nationwide epidemiological surveillance studies of Staphylococcus aureus infections. J Clin Microbiol. 2007;45(1):127-133.     DOI
21 Raspanti CG, Bonetto CC, Vissio C, Pellegrino MS, Reinoso EB, Dieser SA, et al. Prevalence and antibiotic susceptibility of coagulase-negative Staphylococcus species from bovine subclinical mastitis in dairy herds in the central region of Argentina. Rev Argent Microbiol. 2016;48(1):50-56.     DOI
22 Srednik ME, Tremblay YD, Labrie J, Archambault M, Jacques M, Fernandez Cirelli A, et al. Biofilm formation and antimicrobial resistance genes of coagulase-negative staphylococci isolated from cows with mastitis in Argentina. FEMS Microbiol Lett. 2017;364(8):fnx001.  
23 Li L, Zhou L, Wang L, Xue H, Zhao X. Characterization of methicillin-resistant and -susceptible staphylococcal isolates from bovine milk in northwestern china. PLoS One. 2015;10(3):e0116699.     DOI
24 Nyman AK, Fasth C, Waller KP. Intramammary infections with different non-aureus staphylococci in dairy cows. J Dairy Sci. 2018;101(2):1403-1418.     DOI
25 Lange CC, Brito MA, Reis DR, Machado MA, Guimaraes AS, Azevedo AL, et al. Species-level identification of staphylococci isolated from bovine mastitis in Brazil using partial 16S rRNA sequencing. Vet Microbiol. 2015;176(3-4):382-388.     DOI
26 Felipe V, Morgante CA, Somale PS, Varroni F, Zingaretti ML, Bachetti RA, et al. Evaluation of the biofilm forming ability and its associated genes in Staphylococcus species isolates from bovine mastitis in Argentinean dairy farms. Microb Pathog. 2017;104:278-286.     DOI
27 Jimenez Velasquez SD, Torres Higuera LD, Parra Arango JL, Rodriguez Bautista JL, Garcia Castro FE, Patino Burbano RE. Perfil de resistencia antimicrobiana en aislamientos de Staphylococcus spp. obtenidos de leche bovina en Colombia. Rev Argent Microbiol. 2020;52(2):121-130.  
28 Bhat AM, Soodan JS, Singh R, Dhobi IA, Hussain T, Dar MY, et al. Incidence of bovine clinical mastitis in Jammu region and antibiogram of isolated pathogens. Vet World. 2017;10(8):984-989.     DOI
29 Odierno L, Calvinho L, Traverssa P, Lasagno M, Bogni C, Reinoso E. Conventional identification of Streptococcus uberis isolated from bovine mastitis in Argentinean dairy herds. J Dairy Sci. 2006;89(10):3886-3890.     DOI
30 Bochniarz M, Wawron W. Antibiotic susceptibility of methicillin-resistant and methicillin-susceptible coagulase-negative staphylococci isolated from bovine mastitis. Pol J Vet Sci. 2011;14(3):405-410.     DOI
31 Pu W, Su Y, Li J, Li C, Yang Z, Deng H, et al. High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PLoS One. 2014;9(2):e88134.     DOI
32 Soares L, Pereira I, Pribul B, Oliva M, Coelho S, Souza M. Antimicrobial resistance and detection of mecA and blaZ genes in coagulase-negative Staphylococcus isolated from bovine mastitis. Pesqui Vet Bras. 2012;32(8):692-696.     DOI
33 Dorneles EM, Fonseca MD, Abreu JA, Lage AP, Brito MA, Pereira CR, et al. Genetic diversity and antimicrobial resistance in Staphylococcus aureus and coagulase-negative Staphylococcus isolates from bovine mastitis in Minas Gerais, Brazil. MicrobiologyOpen. 2019;8(5):e00736.     DOI
34 Srednik ME, Usongo V, Lepine S, Janvier X, Archambault M, Gentilini ER. Characterisation of Staphylococcus aureus strains isolated from mastitis bovine milk in Argentina. J Dairy Res. 2018;85(1):57-63.     DOI
35 Srednik ME, Crespi E, Testorelli MF, Puigdevall T, Pereyra AM, Rumi MV, et al. First isolation of a methicillin-resistant Staphylococcus aureus from bovine mastitis in Argentina. Vet Anim Sci. 2018;7:100043.  
36 Denamiel G, Carloni G, Llorente P, Gentilini E. Mastitis Bovina: prevalencia microbiana y perfil de resistencia en cocos gram positivos. Rev Med Vet. 2007;87(6):233-235. 
37 Tyson GH, Li C, Ayers S, McDermott PF, Zhao S. Using whole-genome sequencing to determine appropriate streptomycin epidemiological cutoffs for Salmonella and Escherichia coli. FEMS Microbiol Lett. 2016;363(4):fnw009.     DOI
38 Basanisi MG, La Bella G, Nobili G, Franconieri I, La Salandra G. Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiol. 2017;62:141-146.     DOI
39 Cattoir V. Mechanisms of antibiotic resistance. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: Basic Biology to Clinical Manifestations. Oklahoma City: University of Oklahoma Health Sciences Center; 2016. Available from: https://www.ncbi.nlm.nih.gov/books/NBK333414/. 
40 Li T, Lu H, Wang X, Gao Q, Dai Y, Shang J, et al. Molecular Characteristics of Staphylococcus aureus Causing Bovine Mastitis between 2014 and 2015. Front Cell Infect Microbiol. 2017;7:127.  
41 Frey Y, Rodriguez JP, Thomann A, Schwendener S, Perreten V. Genetic characterization of antimicrobial resistance in coagulase-negative staphylococci from bovine mastitis milk. J Dairy Sci. 2013;96(4):2247-2257.     DOI
42 Asadollahi P, Farahani NN, Mirzaii M, Khoramrooz SS, van Belkum A, Asadollahi K, et al. Distribution of the most prevalent Spa types among clinical isolates of methicillin-resistant and -susceptible Staphylococcus aureus around the world: a review. Front Microbiol. 2018;9:163.   DOI