Browse > Article
http://dx.doi.org/10.4142/jvs.21305

Sparing effect of tramadol, lidocaine, dexmedetomidine and their combination on the minimum alveolar concentration of sevoflurane in dogs  

El-Hawari, Sayed Fathi (Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Sohag University)
Oyama, Norihiko (Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University)
Koyama, Yukako (Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University)
Tamura, Jun (Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University)
Itami, Takaharu (Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University)
Sano, Tadashi (Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University)
Yamashita, Kazuto (Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University)
Publication Information
Journal of Veterinary Science / v.23, no.4, 2022 , pp. 53.1-53.9 More about this Journal
Abstract
Background: Problems associated with using inhalational anaesthesia are numerous in veterinary anaesthesia practice. Decreasing the amount of used inhalational anaesthetic agents and minimising of cardiorespiratory disorders are the standard goals of anaesthetists. Objective: This experimental study was carried out to investigate the sparing effect of intravenous tramadol, lidocaine, dexmedetomidine and their combinations on the minimum alveolar concentration (MAC) of sevoflurane in healthy Beagle dogs. Methods: This study was conducted on six beagle dogs. Sevoflurane MAC was determined by the tail clamp method on five separate occasions. The dogs received no treatment (control; CONT), tramadol (TRM: 1.5 mg kg-1 intravenously followed by 1.3 mg kg-1 h-1), lidocaine (LID: 2 mg kg-1 intravenously followed by 3 mg kg-1 h-1), dexmedetomidine (DEX: 2 ㎍ kg-1 intravenously followed by 2 ㎍ kg-1 h-1), and their combination (COMB), respectively. Cardiorespiratory variables were recorded every five minutes and immediately before the application of a noxious stimulus. Results: The COMB treatment had the greatest sevoflurane MAC-sparing effect (67.4 ± 13.9%) compared with the other treatments (5.1 ± 25.3, 12.7 ± 14.3, and 40.3 ± 15.1% for TRM, LID, and DEX treatment, respectively). The cardiopulmonary variables remained within the clinically acceptable range following COMB treatment, although the mean arterial pressure was higher and accompanied by bradycardia. Conclusions: Tramadol-lidocaine-dexmedetomidine co-infusion produced a remarkable sevoflurane MAC-sparing effect in clinically healthy beagle dogs and could result in the alleviation of cardiorespiratory depression caused by sevoflurane. Cardiorespiratory variables should be monitored carefully to avoid undesirable side effects induced by dexmedetomidine.
Keywords
Dog; Tramadol; Lidocaine; Dexmedetomidine; Anaesthesia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Moran-Munoz R, Ibancovichi JA, Gutierrez-Blanco E, Acevedo-Arcique CM, Victoria Mora JM, Tendillo FJ, et al. Effects of lidocaine, dexmedetomidine or their combination on the minimum alveolar concentration of sevoflurane in dogs. J Vet Med Sci. 2014;76(6):847-853.   DOI
2 Driessen B, Reimann W. Interaction of the central analgesic, tramadol, with the uptake and release of 5-hydroxytryptamine in the rat brain in vitro. Br J Pharmacol. 1992;105(1):147-151.   DOI
3 Bamigbade TA, Davidson C, Langford RM, Stamford JA. Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus. Br J Anaesth. 1997;79(3):352-356.   DOI
4 Itami T, Kawase K, Tamaru N, Ishizuka T, Tamura J, Miyoshi K, et al. Effects of a single bolus intravenous dose of tramadol on minimum alveolar concentration (MAC) of sevoflurane in dogs. J Vet Med Sci. 2013;75(5):613-618.   DOI
5 Hector RC, Rezende ML, Mama KR, Steffey EP, Knych HK, Hess AM, et al. Effects of constant rate infusions of dexmedetomidine or MK-467 on the minimum alveolar concentration of sevoflurane in dogs. Vet Anaesth Analg. 2017;44(4):755-765.   DOI
6 Mutoh T, Nishimura R, Kim HY, Matsunaga S, Sasaki N. Cardiopulmonary effects of sevoflurane, compared with halothane, enflurane, and isoflurane, in dogs. Am J Vet Res. 1997;58(8):885-890.
7 Haitjema H, Cullen LK. Clinical experience with sevoflurane in dogs. Aust Vet J. 2001;79(5):339-341.   DOI
8 Branson KR, Quandt JE, Martinez EA, Carroll GL, Trim CM, Dodam JR Jr, et al. A multisite case report on the clinical use of sevoflurane in dogs. J Am Anim Hosp Assoc. 2001;37(5):420-432.   DOI
9 Tisotti T, Valverde A, Hopkins A, O'Sullivan ML, Hanna B, Arroyo L. Use of intravenous lidocaine to treat dexmedetomidine-induced bradycardia in sedated and anesthetized dogs. Vet Anaesth Analg. 2021;48(2):174-186.   DOI
10 Aguado D, Benito J, Gomez de Segura IA. Reduction of the minimum alveolar concentration of isoflurane in dogs using a constant rate of infusion of lidocaine-ketamine in combination with either morphine or fentanyl. Vet J. 2011;189(1):63-66.   DOI
11 Bennett RC, Fancy SP, Walsh CM, Brown AJ, Taylor PM. Comparison of sevoflurane and isoflurane in dogs anaesthetised for clinical surgical or diagnostic procedures. J Small Anim Pract. 2008;49(8):392-397.   DOI
12 Muir WW, Hubbell JA, Bednarski R, Lerche P. Inhalant anesthesia and inhalant anesthetics. In: Handbook of Veterinary Anesthesia. 5th ed. St. Louis: Elsevier Mosby; 2013, 163-187.
13 Valtolina C, Robben JH, Uilenreef J, Murrell JC, Aspegren J, McKusick BC, et al. Clinical evaluation of the efficacy and safety of a constant rate infusion of dexmedetomidine for postoperative pain management in dogs. Vet Anaesth Analg. 2009;36(4):369-383.   DOI
14 Valverde A, Doherty TJ, Hernandez WD. Effect of intravenous lidocaine on isoflurane minimum alveolar concentration in dogs. Vet Anaesth Analg. 2004;31:264-271.   DOI
15 Wilson J, Doherty TJ, Egger CM, Fidler A, Cox S, Rohrbach B. Effects of intravenous lidocaine, ketamine, and the combination on the minimum alveolar concentration of sevoflurane in dogs. Vet Anaesth Analg. 2008;35(4):289-296.   DOI
16 Uilenreef JJ, Murrell JC, McKusick BC, Hellebrekers LJ. Dexmedetomidine continuous rate infusion during isoflurane anaesthesia in canine surgical patients. Vet Anaesth Analg. 2008;35(1):1-12.   DOI
17 Ebner LS, Lerche P, Bednarski RM, Hubbell JA. Effect of dexmedetomidine, morphine-lidocaine-ketamine, and dexmedetomidine-morphine-lidocaine-ketamine constant rate infusions on the minimum alveolar concentration of isoflurane and bispectral index in dogs. Am J Vet Res. 2013;74(7):963-970.   DOI
18 Thengchaisri N, Mahidol C. Evaluating the effects of continuous intravenous infusions of tramadol and tramadol-lidocaine on sevoflurane minimum alveolar concentration (MAC) and entropy values in dogs. J Vet Med Sci. 2019;81(5):682-688.   DOI
19 McMillan CJ, Livingston A, Clark CR, Dowling PM, Taylor SM, Duke T, et al. Pharmacokinetics of intravenous tramadol in dogs. Can J Vet Res. 2008;72(4):325-331.
20 Hofmeister EH, Brainard BM, Sams LM, Allman DA, Cruse AM. Evaluation of induction characteristics and hypnotic potency of isoflurane and sevoflurane in healthy dogs. Am J Vet Res. 2008;69(4):451-456.   DOI
21 Kukanich B, Papich MG. Pharmacokinetics and antinociceptive effects of oral tramadol hydrochloride administration in Greyhounds. Am J Vet Res. 2011;72(2):256-262.   DOI
22 Matsubara LM, Oliva VN, Gabas DT, Oliveira GC, Cassetari ML. Effect of lidocaine on the minimum alveolar concentration of sevoflurane in dogs. Vet Anaesth Analg. 2009;36(5):407-413.   DOI
23 Yamashita K, Okano Y, Yamashita M, Umar MA, Kushiro T, Muir WW. Effects of carprofen and meloxicam with or without butorphanol on the minimum alveolar concentration of sevoflurane in dogs. J Vet Med Sci. 2008;70(1):29-35.   DOI
24 Seddighi MR, Egger CM, Rohrbach BW, Cox SK, Doherty TJ. Effects of tramadol on the minimum alveolar concentration of sevoflurane in dogs. Vet Anaesth Analg. 2009;36(4):334-340.   DOI
25 Muir WW 3rd, Wiese AJ, March PA. Effects of morphine, lidocaine, ketamine, and morphine-lidocaine-ketamine drug combination on minimum alveolar concentration in dogs anesthetized with isoflurane. Am J Vet Res. 2003;64(9):1155-1160.   DOI
26 Murrell JC, Hellebrekers LJ. Medetomidine and dexmedetomidine: a review of cardiovascular effects and antinociceptive properties in the dog. Vet Anaesth Analg. 2005;32(3):117-127.   DOI
27 KuKanich B, Papich MG. Pharmacokinetics of tramadol and the metabolite O-desmethyltramadol in dogs. J Vet Pharmacol Ther. 2004;27(4):239-246.   DOI
28 Akashi N, Murahata Y, Kishida H, Hikasa Y, Azuma K, Imagawa T. Effects of constant rate infusions of dexmedetomidine, remifentanil and their combination on minimum alveolar concentration of sevoflurane in dogs. Vet Anaesth Analg. 2020;47(4):490-498.   DOI
29 Pascoe PJ. The cardiopulmonary effects of dexmedetomidine infusions in dogs during isoflurane anesthesia. Vet Anaesth Analg. 2015;42(4):360-368.   DOI
30 Delgado C, Bentley E, Hetzel S, Smith LJ. Comparison of carprofen and tramadol for postoperative analgesia in dogs undergoing enucleation. J Am Vet Med Assoc. 2014;245(12):1375-1381.   DOI
31 Moran-Munoz R, Valverde A, Ibancovichi JA, Acevedo-Arcique CM, Recillas-Morales S, Sanchez-Aparicio P, et al. Cardiovascular effects of constant rate infusions of lidocaine, lidocaine and dexmedetomidine, and dexmedetomidine in dogs anesthetized at equipotent doses of sevoflurane. Can Vet J. 2017;58(7):729-734.