Browse > Article
http://dx.doi.org/10.4142/jvs.21274

Evaluation of host and bacterial gene modulation during Lawsonia intracellularis infection in immunocompetent C57BL/6 mouse model  

Kirthika, Perumalraja (College of Veterinary Medicine, Jeonbuk National University)
Park, Sungwoo (College of Veterinary Medicine, Jeonbuk National University)
Jawalagatti, Vijayakumar (College of Veterinary Medicine, Jeonbuk National University)
Lee, John Hwa (College of Veterinary Medicine, Jeonbuk National University)
Publication Information
Journal of Veterinary Science / v.23, no.3, 2022 , pp. 41.1-41.15 More about this Journal
Abstract
Background: Proliferative enteritis caused by Lawsonia intracellularis undermines the economic stability of the swine industry worldwide. The development of cost-effective animal models to study the pathophysiology of the disease will help develop strategies to counter this bacterium. Objectives: This study focused on establishing a model of gastrointestinal (GI) infection of L. intracellularis in C57BL/6 mice to evaluate the disease progression and lesions of proliferative enteropathy (PE) in murine GI tissue. Methods: We assessed the murine mucosal and cell-mediated immune responses generated in response to inoculation with L. intracellularis. Results: The mice developed characteristic lesions of the disease and shed L. intracellularis in the feces following oral inoculation with 5 × 107 bacteria. An increase in L. intracellularis 16s rRNA and groEL copies in the intestine of infected mice indicated intestinal dissemination of the bacteria. The C57BL/6 mice appeared capable of modulating humoral and cell-mediated immune responses to L. intracellularis infection. Notably, the expression of genes for the vitamin B12 receptor and for secreted and membrane-bound mucins were downregulated in L. intracellularis -infected mice. Furthermore, L. intracellularis colonization of the mouse intestine was confirmed by the immunohistochemistry and western blot analyses. Conclusions: This is the first study demonstrating the contributions of bacterial chaperonin and host nutrient genes to PE using an immunocompetent mouse model. This mouse infection model may serve as a platform from which to study L. intracellularis infection and develop potential vaccination and therapeutic strategies to treat PE.
Keywords
Animal model; mouse; mucin; immune response; cytokines;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bryda EC. The Mighty Mouse: the impact of rodents on advances in biomedical research. Mo Med. 2013;110(3):207-211.
2 Nathues H, Holthaus K, grosse Beilage E. Quantification of Lawsonia intracellularis in porcine faeces by real-time PCR. J Appl Microbiol. 2009;107(6):2009-2016.   DOI
3 Zhou M, Guo Y, Zhao J, Hu Q, Hu Y, Zhang A, et al. Identification and characterization of novel immunogenic outer membrane proteins of Haemophilus parasuis serovar 5. Vaccine. 2009;27(38):5271-5277.   DOI
4 Yeh JY, Ga AR. Systemic cytokine response in pigs infected orally with a Lawsonia intracellularis isolate of South Korean origin. J Vet Med Sci. 2018;80(1):13-19.   DOI
5 Collins AM, Fell S, Pearson H, Toribio JA. Colonisation and shedding of Lawsonia intracellularis in experimentally inoculated rodents and in wild rodents on pig farms. Vet Microbiol. 2011;150(3-4):384-388.   DOI
6 Fourie KR, Wilson HL. Understanding GroEL and DnaK stress response proteins as antigens for bacterial diseases. Vaccines (Basel). 2020;8(4):773.   DOI
7 McNamara N, Basbaum C. Signaling networks controlling mucin production in response to Grampositive and Gram-negative bacteria. Glycoconj J. 2001;18(9):715-722.   DOI
8 Pusterla N, Gebhart CJ. Equine proliferative enteropathy--a review of recent developments. Equine Vet J. 2013;45(4):403-409.   DOI
9 Bialkowska AB, Ghaleb AM, Nandan MO, Yang VW. Improved Swiss-rolling technique for intestinal tissue preparation for immunohistochemical and immunofluorescent analyses. J Vis Exp. 2016;113(113):54161.
10 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) Method. Methods. 2001;25(4):402-408.   DOI
11 Cooper DM, Swanson DL, Barns SM, Gebhart CJ. Comparison of the 16S ribosomal DNA sequences from the intracellular agents of proliferative enteritis in a hamster, deer, and ostrich with the sequence of a porcine isolate of Lawsonia intracellularis. Int J Syst Bacteriol. 1997;47(3):635-639.   DOI
12 Karuppannan AK, Opriessnig T. Lawsonia intracellularis: revisiting the disease ecology and control of this fastidious pathogen in pigs. Front Vet Sci. 2018;5:181.   DOI
13 Cross RF, Smith CK, Parker CF. Terminal ileitis in lambs. J Am Vet Med Assoc. 1973;162(7):564-566.
14 Fox JG, Dewhirst FE, Fraser GJ, Paster BJ, Shames B, Murphy JC. Intracellular Campylobacter-like organism from ferrets and hamsters with proliferative bowel disease is a Desulfovibrio sp. J Clin Microbiol. 1994;32(5):1229-1237.   DOI
15 Klein EC, Gebhart CJ, Duhamel GE. Fatal outbreaks of proliferative enteritis caused by Lawsonia intracellularis in young colony-raised rhesus macaques. J Med Primatol. 1999;28(1):11-18.   DOI
16 Vannucci FA, Gebhart CJ, McOrist S. Proliferative enteropathy. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. Diseases of Swine. Hoboken: John Wiley & Sons, Inc.; 2019, 898-911.
17 Guedes RM, Gebhart CJ. Preparation and characterization of polyclonal and monoclonal antibodies against Lawsonia intracellularis. J Vet Diagn Invest. 2003;15(5):438-446.   DOI
18 Bengtsson RJ, MacIntyre N, Guthrie J, Wilson AD, Finlayson H, Matika O, et al. Lawsonia intracellularis infection of intestinal crypt cells is associated with specific depletion of secreted MUC2 in goblet cells. Vet Immunol Immunopathol. 2015;168(1-2):61-67.   DOI
19 Richer L, Potula HH, Melo R, Vieira A, Gomes-Solecki M. Mouse model for sublethal Leptospira interrogans infection. Infect Immun. 2015;83(12):4693-4700.   DOI
20 Pie S, Lalles JP, Blazy F, Laffitte J, Seve B, Oswald IP. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J Nutr. 2004;134(3):641-647.   DOI
21 Fourie KR, Choudhary P, Ng SH, Obradovic M, Brownlie R, Anand SK, et al. Evaluation of immunogenicity and protection mediated by Lawsonia intracellularis subunit vaccines. Vet Immunol Immunopathol. 2021;237:110256.   DOI
22 Pluske JR, Pethick DW, Hopwood DE, Hampson DJ. Nutritional influences on some major enteric bacterial diseases of pig. Nutr Res Rev. 2002;15(2):333-371.   DOI
23 Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M, et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity. 2016;44(3):647-658.   DOI
24 Holyoake PK, Cutler RS, Caple IW, Monckton RP. Enzyme-linked immunosorbent assay for measuring ileal symbiont intracellularis-specific immunoglobulin G response in sera of pigs. J Clin Microbiol. 1994;32(8):1980-1985.   DOI
25 Shepherd FR, McLaren JE. T cell immunity to bacterial pathogens: mechanisms of immune control and bacterial evasion. Int J Mol Sci. 2020;21(17):6144.   DOI
26 Overbergh L, Giulietti A, Valckx D, Decallonne R, Bouillon R, Mathieu C. The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J Biomol Tech. 2003;14(1):33-43.
27 Guedes RM, Machuca MA, Quiroga MA, Pereira CE, Resende TP, Gebhart CJ. Lawsonia intracellularis in pigs: progression of lesions and involvement of apoptosis. Vet Pathol. 2017;54(4):620-628.   DOI
28 Smith DG, Lawson GH. Lawsonia intracellularis: getting inside the pathogenesis of proliferative enteropathy. Vet Microbiol. 2001;82(4):331-345.   DOI
29 Cheng HY, Ning MX, Chen DK, Ma WT. Interactions between the gut microbiota and the host innate immune response against pathogens. Front Immunol. 2019;10:607.   DOI
30 Vannucci FA, Gebhart CJ. Recent advances in understanding the pathogenesis of Lawsonia intracellularis infections. Vet Pathol. 2014;51(2):465-477.   DOI
31 Vannucci FA, Pusterla N, Mapes SM, Gebhart C. Evidence of host adaptation in Lawsonia intracellularis infections. Vet Res. 2012;43(1):53.   DOI
32 Quintana-Hayashi MP, Padra M, Padra JT, Benktander J, Linden SK. Mucus-pathogen interactions in the gastrointestinal tract of farmed animals. Microorganisms. 2018;6(2):55.   DOI
33 Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, et al. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006;203(4):941-951.   DOI
34 Resende TP, Medida RL, Guo Y, Vannucci FA, Saqui-Salces M, Gebhart C. Evaluation of mouse enteroids as a model for Lawsonia intracellularis infection. Vet Res. 2019;50(1):57.   DOI
35 Huan YW, Bengtsson RJ, MacIntyre N, Guthrie J, Finlayson H, Smith SH, et al. Lawsonia intracellularis exploits β-catenin/Wnt and Notch signalling pathways during infection of intestinal crypt to alter cell homeostasis and promote cell proliferation. PLoS One. 2017;12(3):e0173782.   DOI
36 Gebhart CJ, Guedes RM. Lawsonia intracellularis. In: Gyles CL, Prescott JF, Songer JG, Thoen CO. Pathogenesis of Bacterial Infections in Animals. 2010, 503-512.
37 Pereira CE, Resende TP, Armien AG, Laub RP, Vannucci FA, Santos RL, et al. Survival of Lawsonia intracellularis in porcine peripheral blood monocyte-derived macrophages. PLoS One. 2020;15(7):e0236887.   DOI
38 Sampieri F, Vannucci FA, Allen AL, Pusterla N, Antonopoulos AJ, Ball KR, et al. Species-specificity of equine and porcine Lawsonia intracellularis isolates in laboratory animals. Can J Vet Res 2013;77(4):261-272.
39 Boutrup TS, Boesen HT, Boye M, Agerholm JS, Jensen TK. Early pathogenesis in porcine proliferative enteropathy caused by Lawsonia intracellularis. J Comp Pathol. 2010;143(2-3):101-109.   DOI
40 Collins AM, Love RJ, Jasni S, McOrist S. Attempted infection of mice, rats and chickens by porcine strains of Lawsonia intracellularis. Aust Vet J. 1999;77(2):120-122.   DOI