Browse > Article
http://dx.doi.org/10.4142/jvs.2021.22.e44

Intraoperative fluid therapy for video-assisted ovariohysterectomy in dogs  

Oliveira, Marilia Teresa de (Department of Veterinary Medicine, Federal University of Pampa)
Feranti, Joao Pedro Scussel (Department of Veterinary Medicine, University Center of the Campaign Region)
Coradini, Gabriela Pesamosca (Autonomous)
Chaves, Rafael Oliveira (Autonomous)
Correa, Luis Felipe Dutra (Department of Large Animal Clinic, Federal University of Santa Maria)
Linhares, Marcella Teixeira (Department of Veterinary Medicine, Regional University of Northwestern Rio Grande do Sul)
Thiesen, Roberto (Department of Veterinary Medicine, Federal University of Pampa)
Silva, Marco Augusto Machado (Department of Veterinary Medicine, Federal University of Goias)
Brun, Mauricio Veloso (Department of Small Animal Clinic, Federal University of Santa Maria)
Publication Information
Journal of Veterinary Science / v.22, no.3, 2021 , pp. 44.1-44.15 More about this Journal
Abstract
Background: Intraoperative fluids are still poorly studied in veterinary medicine. In humans the dosage is associated with significant differences in postoperative outcomes. Objectives: The aim of this study is to verify the influence of three different fluid therapy rates in dogs undergoing video-assisted ovariohysterectomy. Methods: Twenty-four female dogs were distributed into three groups: G5, G10, and G20. Each group was given 5, 10, and 20 mL·kg-1·h-1 of Lactate Ringer, respectively. This study evaluated the following parameters: central venous pressure, arterial blood pressure, heart rate, respiratory rate, temperature, acid-base balance, and serum lactate levels. Additionally, this study evaluated the following urinary variables: urea, creatinine, protein to creatinine ratio, urine output, and urine specific gravity. The dogs were evaluated up to 26 h after the procedure. Results: All animals presented respiratory acidosis during the intraoperative period. The G5 group evidenced intraoperative oliguria (0.80 ± 0.38 mL·kg-1·h-1), differing from the G20 group (2.17 ± 0.52 mL·kg-1·h-1) (p = 0.001). Serum lactate was different between groups during extubation (p = 0.036), with higher values being recorded in the G5 group (2.19 ± 1.65 mmol/L). Animals from the G20 group presented more severe hypothermia at the end of the procedure (35.93 ± 0.61℃) (p = 0.032). Only the members of the G20 group presented mean potassium values below the reference for the species. Anion gap values were lower in the G20 group when compared to the G5 and G10 groups (p = 0.017). Conclusions: The use of lactated Ringer's solution at the rate of 10 mL·kg-1·h-1 seems to be beneficial in the elective laparoscopic procedures over the 5 or 20 mL·kg-1·h-1 rates of infusion.
Keywords
Dogs; crystalloids; lactated Ringer's solution; videosurgery; abdominal perfusion pressure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Janotka M, Ostadal P. Biochemical markers for clinical monitoring of tissue perfusion. Mol Cell Biochem. 2021;476(3):1313-1326.   DOI
2 Hauptman JG, Richter MA, Wood SL, Nachreiner RF. Effects of anesthesia, surgery, and intravenous administration of fluids on plasma antidiuretic hormone concentrations in healthy dogs. Am J Vet Res. 2000;61(10):1273-1276.   DOI
3 Gonzalez FHD, Silva SC. Introducao a Bioquimica Clinica Veterinaria. Porto Alegre: Editora da Universidade Federal do Rio Grande do Sul; 2017.
4 DiBartola SP. Chapter 9. Introduction to acid-base disorders. In: DiBartola SP, editor. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice. 4th ed. St. Louis: Saunders/Elsevier; 2012, 231-252.
5 Mathews KA. Chapter 16. Monitoring fluid therapy and complications of fluid therapy. In: DiBartola SP, editor. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice. 4th ed. St. Louis: Saunders/Elsevier; 2012, 386-404.
6 Gerges FJ, Kanazi GE, Jabbour-Khoury SI. Anesthesia for laparoscopy: a review. J Clin Anesth. 2006;18(1):67-78.   DOI
7 Haskins SC. Monitoring anesthetized patients. In: Grimm KA, Lamont LA, Tranquilli WJ, Greene SA, Robertson SA, editors. Veterinary Anesthesia and Analgesia: The Fifth Edition of Lumb and Jones. Hoboken: Wiley-Blackwell; 2017, 86-113.
8 DiBartola SP. Chapter 10. Metabolic acid-base disorders. In: DiBartola SP, editor. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice. 4th ed. St. Louis: Saunders/Elsevier; 2012, 253-286.
9 Pascoe PJ. Chapter 17. Perioperative management of fluid therapy. In: DiBartola SP, editor. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice. 4th ed. St. Louis: Saunders/Elsevier; 2012, 405-435.
10 Davis H, Jensen T, Johnson A, Knowles P, Meyer R, Rucinsky R, et al. 2013 AAHA/AAFP fluid therapy guidelines for dogs and cats. J Am Anim Hosp Assoc. 2013;49(3):149-159.   DOI
11 Doherty M, Buggy DJ. Intraoperative fluids: how much is too much? Br J Anaesth. 2012;109(1):69-79.   DOI
12 Shin CH, Long DR, McLean D, Grabitz SD, Ladha K, Timm FP, et al. Effects of intraoperative fluid management on postoperative outcomes: a hospital registry study. Ann Surg. 2018;267(6):1084-1092.   DOI
13 Fantoni D, Shih AC. Perioperative fluid therapy. Vet Clin North Am Small Anim Pract. 2017;47(2):423-434.   DOI
14 Silverstein DC, Cozzi EM, Hopkins AS, Keefe TJ. Microcirculatory effects of intravenous fluid administration in anesthetized dogs undergoing elective ovariohysterectomy. Am J Vet Res. 2014;75(9):809-817.   DOI
15 Holte K. Pathophysiology and clinical implications of peroperative fluid management in elective surgery. Dan Med Bull. 2010;57(7):B4156.
16 de Aguiar ESV, Dallabrida AL, Bopp S, Rocha GLS, Franca EP, da Fonseca ET, et al. Measurement of central venous pressure by mean of central and peripheric catheters: comparison among the obtained vallues in dogs and elaboration of a correction index. Cienc Rural. 2004;34(6):1827-1831.   DOI
17 Bosch L, Rivera del Alamo MM, Andaluz A, Monreal L, Torrente C, Garcia-Arnas F, et al. Effects of ovariohysterectomy on intra-abdominal pressure and abdominal perfusion pressure in cats. Vet Rec. 2012;171(24):622.   DOI
18 Fitzgerald SD, Andrus CH, Baudendistel LJ, Dahms TE, Kaminski DL. Hypercarbia during carbon dioxide pneumoperitoneum. Am J Surg. 1992;163(1):186-190.   DOI
19 Caricato A, Conti G, Della Corte F, Mancino A, Santilli F, Sandroni C, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58(3):571-576.   DOI
20 Cheatham ML, Safcsak K. Intraabdominal pressure: a revised method for measurement. J Am Coll Surg. 1998;186(5):594-595.   DOI
21 Carlson GP, Bruss M. Chapter 17. Fluid, electrolyte, and acid-base balance. In: Kaneko JJ, Harvey JW, Bruss M, editors. Clinical Biochemistry of Domestic Animals. 6th ed. Boston: Elsevier Academic Press; 2008, 529-559.
22 de Morais HS, DiBartola SP. Ventilatory and metabolic compensation in dogs with acid-base disturbances. J Vet Emerg Crit Care. 1991;1(2):39-49.   DOI
23 Park YT, Okano S. Influence of pneumoperitoneum and postural change on the cardiovascular and respiratory systems in dogs. J Vet Med Sci. 2015;77(10):1223-1226.   DOI
24 Rodriguez-Diaz JM, Hayes GM, Boesch J, Martin-Flores M, Sumner JP, Hayashi K, et al. Decreased incidence of perioperative inadvertent hypothermia and faster anesthesia recovery with increased environmental temperature: a nonrandomized controlled study. Vet Surg. 2020;49(2):256-264.   DOI
25 Sessler DI. Deliberate mild hypothermia. J Neurosurg Anesthesiol. 1995;7(1):38-46.   DOI
26 Brun MV. Cirurgias no aparelho reprodutor feminino de caninos. In: Videocirurgia em Pequenos Animais. 1st ed. Rio de Janeiro: Roca; 2015, 186-213.
27 Botter FCS, Taha MO, Fagundes DJ, Fagundes ATN. The role of pneumoperitoneum in the respiratory and hemodynamic evaluation in anaesthetized rats, with or without intubation. Rev Col Bras Cir. 2005;32(5):261-266.   DOI
28 Cheatham ML, White MW, Sagraves SG, Johnson JL, Block EF. Abdominal perfusion pressure: a superior parameter in the assessment of intra-abdominal hypertension. J Trauma. 2000;49(4):621-626.   DOI
29 Yasbek KVB. Hipotermia. In: Fautoni DT, editor. Anestesia em Caes e Gatos. 2nd ed. Sao Paulo: Roca; 2009, 605-610.
30 Schafer M, Krahenbuhl L. Effect of laparoscopy on intra-abdominal blood flow. Surgery. 2001;129(4):385-389.   DOI
31 Wever KE, Bruintjes MH, Warle MC, Hooijmans CR. Renal perfusion and function during pneumoperitoneum: a systematic review and meta-analysis of animal studies. PLoS One. 2016;11(9):e0163419.   DOI
32 Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723-740.   DOI
33 Smart L, Boyd CJ, Claus MA, Bosio E, Hosgood G, Raisis A. Large-volume crystalloid fluid is associated with increased hyaluronan shedding and inflammation in a canine hemorrhagic shock model. Inflammation. 2018;41(4):1515-1523.   DOI
34 Leonard IE, Cunningham AJ. Anaesthetic considerations for laparoscopic cholecystectomy. Best Pract Res Clin Anaesthesiol. 2002;16(1):1-20.   DOI
35 DiBartola SP, Bateman S. Chapter 14. Introduction to fluid therapy. In: DiBartola SP, editor. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice. 4th ed. St. Louis: Saunders/Elsevier; 2012, 331-350.
36 Cheatham ML, Malbrain ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, et al. Results from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment Syndrome. II. Recommendations. Intensive Care Med. 2007;33(6):951-962.   DOI
37 Horoz OO, Yildizdas D, Sari Y, Unal I, Ekinci F, Petmezci E. The relationship of abdominal perfusion pressure with mortality in critically ill pediatric patients. J Pediatr Surg. 2019;54(9):1731-1735.   DOI
38 Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care. 2001;7(3):204-211.   DOI
39 Mitchell SC, Vinnakota A, Deo SV, Markowitz AH, Sareyyupoglu B, Elgudin Y, et al. Relationship between intraoperative serum lactate and hemoglobin levels on postoperative renal function in patients undergoing elective cardiac surgery. J Card Surg. 2018;33(6):316-321.   DOI
40 Demyttenaere S, Feldman LS, Fried GM. Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc. 2007;21(2):152-160.   DOI
41 Sodha S, Nazarian S, Adshead JM, Vasdev N, Mohan-S G. Effect of pneumoperitoneum on renal function and physiology in patients undergoing robotic renal surgery. Curr Urol. 2016;9(1):1-4.   DOI
42 Hansen B, Vigani A. Maintenance fluid therapy: isotonic versus hypotonic solutions. Vet Clin North Am Small Anim Pract. 2017;47(2):383-395.   DOI
43 Cheatham ML, Safcsak K. Is the evolving management of intra-abdominal hypertension and abdominal compartment syndrome improving survival? Crit Care Med. 2010;38(2):402-407.   DOI
44 Osborne CA, Stevens JB, Lulich JP, Ulrich LK, Bird KA, Koehler LA, et al. A clinician's analysis of urinalysis. In: Osborne CA, Finco DR, editors. Canine and Feline Nephrology and Urology. 1st ed. Baltimore: Williams & Wilkins; 1995, 136-205.