Browse > Article
http://dx.doi.org/10.3348/kjr.2015.16.4.729

Intervention Planning Using a Laser Navigation System for CT-Guided Interventions: A Phantom and Patient Study  

Gruber-Rouh, Tatjana (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt)
Lee, Clara (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt)
Bolck, Jan (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt)
Naguib, Nagy N.N. (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt)
Schulz, Boris (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt)
Eichler, Katrin (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt)
Aschenbach, Rene (Department of Radiology, HELIOS Klinikum Erfurt)
Wichmann, Julian L. (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt)
Vogl, Thomas.J. (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt)
Zangos, Stephan (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt)
Publication Information
Korean Journal of Radiology / v.16, no.4, 2015 , pp. 729-735 More about this Journal
Abstract
Objective: To investigate the accuracy, efficiency and radiation dose of a novel laser navigation system (LNS) compared to those of free-handed punctures on computed tomography (CT). Materials and Methods: Sixty punctures were performed using a phantom body to compare accuracy, timely effort, and radiation dose of the conventional free-handed procedure to those of the LNS-guided method. An additional 20 LNS-guided interventions were performed on another phantom to confirm accuracy. Ten patients subsequently underwent LNS-guided punctures. Results: The phantom 1-LNS group showed a target point accuracy of $4.0{\pm}2.7mm$ (freehand, $6.3{\pm}3.6mm$; p = 0.008), entrance point accuracy of $0.8{\pm}0.6mm$ (freehand, $6.1{\pm}4.7mm$), needle angulation accuracy of $1.3{\pm}0.9^{\circ}$ (freehand, $3.4{\pm}3.1^{\circ}$; p < 0.001), intervention time of $7.03{\pm}5.18$ minutes (freehand, $8.38{\pm}4.09$ minutes; p = 0.006), and $4.2{\pm}3.6$ CT images (freehand, $7.9{\pm}5.1$; p < 0.001). These results show significant improvement in 60 punctures compared to freehand. The phantom 2-LNS group showed a target point accuracy of $3.6{\pm}2.5mm$, entrance point accuracy of $1.4{\pm}2.0mm$, needle angulation accuracy of $1.0{\pm}1.2^{\circ}$, intervention time of $1.44{\pm}0.22$ minutes, and $3.4{\pm}1.7$ CT images. The LNS group achieved target point accuracy of $5.0{\pm}1.2mm$, entrance point accuracy of $2.0{\pm}1.5mm$, needle angulation accuracy of $1.5{\pm}0.3^{\circ}$, intervention time of $12.08{\pm}3.07$ minutes, and used $5.7{\pm}1.6$ CT-images for the first experience with patients. Conclusion: Laser navigation system improved accuracy, duration of intervention, and radiation dose of CT-guided interventions.
Keywords
Laser navigation system; LNS; CT-guided interventions; Phantom study; First experience with patients;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Moser C, Becker J, Deli M, Busch M, Boehme M, Groenemeyer DH. A novel Laser Navigation System reduces radiation exposure and improves accuracy and workflow of CT-guided spinal interventions: a prospective, randomized, controlled, clinical trial in comparison to conventional freehand puncture. Eur J Radiol 2013;82:627-632   DOI
2 Nitta N, Takahashi M, Tanaka T, Takazakura R, Sakashita Y, Furukawa A, et al. Laser-guided computed tomography puncture system: simulation experiments using artificial phantom lesions and preliminary clinical experience. Radiat Med 2007;25:187-193   DOI
3 Krombach GA, Schmitz-Rode T, Wein BB, Meyer J, Wildberger JE, Brabant K, et al. Potential of a new laser target system for percutaneous CT-guided nerve blocks: technical note. Neuroradiology 2000;42:838-841   DOI
4 Tovar-Arriaga S, Tita R, Pedraza-Ortega JC, Gorrostieta E, Kalender WA. Development of a robotic FD-CT-guided navigation system for needle placement-preliminary accuracy tests. Int J Med Robot 2011;7:225-236   DOI
5 Kloeppel R, Weisse T, Deckert F, Wilke W, Pecher S. CT-guided intervention using a patient laser marker system. Eur Radiol 2000;10:1010-1014   DOI
6 Palestrant AM. Comprehensive approach to CT-guided procedures with a hand-held guidance device. Radiology 1990;174:270-272   DOI
7 Bale R, Widmann G. Navigated CT-guided interventions. Minim Invasive Ther Allied Technol 2007;16:196-204   DOI
8 Ritter M, Rassweiler MC, Hacker A, Michel MS. Laser-guided percutaneous kidney access with the Uro Dyna-CT: first experience of three-dimensional puncture planning with an ex vivo model. World J Urol 2013;31:1147-1151   DOI
9 Zangos S, Muller C, Mayer F, Naguib NN, Nour-Eldin NE, Hansmann ML, et al. [Retrospective 5-year analysis of MR-guided biopsies in a low-field MR system]. Rofo 2009;181:658-663   DOI
10 Schell B, Eichler K, Mack MG, Muller C, Kerl JM, Czerny C, et al. [Robot-assisted biopsies in a high-field MRI system - first clinical results]. Rofo 2012;184:42-47   DOI
11 Zangos S, Melzer A, Eichler K, Sadighi C, Thalhammer A, Bodelle B, et al. MR-compatible assistance system for biopsy in a high-field-strength system: initial results in patients with suspicious prostate lesions. Radiology 2011;259:903-910   DOI
12 Becker HC, Meissner O, Waggershauser T. [C-arm CT-guided 3D navigation of percutaneous interventions]. Radiologe 2009;49:852-855   DOI
13 Proschek D, Kafchitsas K, Rauschmann MA, Kurth AA, Vogl TJ, Geiger F. Reduction of radiation dose during facet joint injection using the new image guidance system SabreSource: a prospective study in 60 patients. Eur Spine J 2009;18:546-553   DOI
14 Jacobi V, Thalhammer A, Kirchner J. Value of a laser guidance system for CT interventions: a phantom study. Eur Radiol 1999;9:137-140   DOI
15 Penzkofer T, Bruners P, Isfort P, Schoth F, Gunther RW, Schmitz-Rode T, et al. Free-hand CT-based electromagnetically guided interventions: accuracy, efficiency and dose usage. Minim Invasive Ther Allied Technol 2011;20:226-233   DOI
16 Yang CL, Yang BD, Lin ML, Wang YH, Wang JL. A patient-mount navigated intervention system for spinal diseases and its clinical trial on percutaneous pulsed radiofrequency stimulation of dorsal root ganglion. Spine (Phila Pa 1976) 2010;35:E1126-E1132   DOI
17 Moche M, Zajonz D, Kahn T, Busse H. MRI-guided procedures in various regions of the body using a robotic assistance system in a closed-bore scanner: preliminary clinical experience and limitations. J Magn Reson Imaging 2010;31:964-974   DOI
18 Magnusson A, Radecka E, Lonnemark M, Raland H. Computed-tomography-guided punctures using a new guidance device. Acta Radiol 2005;46:505-509   DOI
19 Appelbaum L, Sosna J, Nissenbaum Y, Benshtein A, Goldberg SN. Electromagnetic navigation system for CT-guided biopsy of small lesions. AJR Am J Roentgenol 2011;196:1194-1200   DOI
20 Penzkofer T, Isfort P, Bruners P, Wiemann C, Kyriakou Y, Kalender WA, et al. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments. Eur Radiol 2010;20:2656-2662   DOI